
www.manaraa.com

University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Computer Science Computer Science 

2017 

Modeling Faceted Browsing with Category Theory for Reuse and Modeling Faceted Browsing with Category Theory for Reuse and 

Interoperability Interoperability 

Daniel R. Harris 
University of Kentucky, daniel.harris@uky.edu 
Author ORCID Identifier: 

http://orcid.org/0000-0001-9139-3433 
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.138 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Harris, Daniel R., "Modeling Faceted Browsing with Category Theory for Reuse and Interoperability" 
(2017). Theses and Dissertations--Computer Science. 57. 
https://uknowledge.uky.edu/cs_etds/57 

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has 
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
http://orcid.org/0000-0001-9139-3433
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


www.manaraa.com

STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Daniel R. Harris, Student 

Dr. Jerzy W. Jaromczyk, Major Professor 

Dr. Miroslaw Truszczynksi, Director of Graduate Studies 



www.manaraa.com

Modeling Faceted Browsing with Category Theory
for Reuse and Interoperability

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Daniel R. Harris

Lexington, Kentucky

Director: Dr. Jerzy W. Jaromczyk
Lexington, Kentucky 2017

Copyright c© Daniel R. Harris 2017



www.manaraa.com

ABSTRACT OF DISSERTATION

Modeling Faceted Browsing with Category Theory
for Reuse and Interoperability

Faceted browsing (also called faceted search or faceted navigation) is an exploratory
search model where facets assist in the interactive navigation of search results. Facets
are attributes that have been assigned to describe resources being explored; a faceted
taxonomy is a collection of facets provided by the interface and is often organized as
sets, hierarchies, or graphs. Faceted browsing has become ubiquitous with modern
digital libraries and online search engines, yet the process is still difficult to abstractly
model in a manner that supports the development of interoperable and reusable inter-
faces. We propose category theory as a theoretical foundation for faceted browsing
and demonstrate how the interactive process can be mathematically abstracted in
order to support the development of reusable and interoperable faceted systems.

Existing efforts in facet modeling are based upon set theory, formal concept anal-
ysis, and light-weight ontologies, but in many regards they are implementations of
faceted browsing rather than a specification of the basic, underlying structures and
interactions. We will demonstrate that category theory allows us to specify faceted
objects and study the relationships and interactions within a faceted browsing system.
Resulting implementations can then be constructed through a category-theoretic lens
using these models, allowing abstract comparison and communication that naturally
support interoperability and reuse.

In this context, reuse and interoperability are at two levels: between discrete
systems and within a single system. Our model works at both levels by leveraging
category theory as a common language for representation and computation. We will
establish facets and faceted taxonomies as categories and will demonstrate how the
computational elements of category theory, including products, merges, pushouts,
and pullbacks, extend the usefulness of our model. More specifically, we demonstrate
that categorical constructions such as the pullback and pushout operations can help
organize and reorganize facets; these operations in particular can produce faceted
views containing relationships not found in the original source taxonomy. We show
how our category-theoretic model of facets relates to database schemas and discuss
how this relationship assists in implementing the abstractions presented.
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We give examples of interactive interfaces from the biomedical domain to help
illustrate how our abstractions relate to real-world requirements while enabling sys-
tematic reuse and interoperability. We introduce DELVE (Document ExpLoration
and Visualization Engine), our framework for developing interactive visualizations as
modular Web-applications in order to assist researchers with exploratory literature
search. We show how facets relate to and control visualizations; we give three exam-
ples of text visualizations that either contain or interact with facets. We show how
each of these visualizations can be represented with our model and demonstrate how
our model directly informs implementation.

With our general framework for communicating consistently about facets at a
high level of abstraction, we enable the construction of interoperable interfaces and
enable the intelligent reuse of both existing and future efforts.

KEYWORDS: faceted browsing, category theory, abstract models, interactive sys-
tems, reusability, interoperability

Author’s signature: Daniel R. Harris

Date: April 29, 2017
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Chapter 1 Introduction

Faceted classification is the process of assigning facets to resources in a way that

enables intelligent exploratory search aided by an interactive faceted taxonomy [1].

Facets are the individual elements of a faceted taxonomy and are simply attributes

known to describe an object being cataloged; these collections of facets are often

organized as sets, hierarchies, lattices, or graphs. Facets are usually shown alongside

a list of other related, relevant facets which aid in interactive filtering and expansion

of search results [2]. Exploratory search using a faceted taxonomy is often called

faceted browsing (or faceted navigation or faceted search) [3] and is commonly utilized

in digital libraries and online search engines.

Facet models formalize faceted data representations and the subsequent inter-

active operations for exploratory search tasks. Wei et al. observed three major

theoretical foundations behind current research of facet models: set theory, formal

concept analysis, and lightweight ontologies [1]. In this contribution, we demonstrate

that category theory can act as a theoretical foundation for faceted browsing that

encourages reuse and interoperability by uniting different facet models together un-

der a common framework [4, 5]. We also establish facets and faceted taxonomies as

categories and demonstrate how the computational elements of category theory, such

as products, functors, pushouts, and pullbacks extend the utility of our model [4].

The usefulness of faceted browsing systems is well-established in the digital libraries

research community [6, 7], but reuse and interoperability are typically not major de-

sign considerations [4]. Our goal is to create a rich environment for faceted browsing

where reuse and interoperability are primary design considerations.

1.1 Motivation

The motivation for choosing category theory began when designing the next phase

of DELVE (Document ExpLoration and Visualization Engine) [8], our framework

for creating visualizations for browsing biomedical literature. Specifically, we en-

countered difficultly in modeling DELVE’s ability to create numerous visualizations,

which are either controlled by facets or contain faceted structures. Additionally, one

visualization may impact another either by filtering or focusing. For example, how can

one effectively represent a hierarchical tree of facets which is simultaneously brows-

able and capable of spawning faceted graphs containing interactive, linked nodes? A

1
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model of faceted browsing that is capable of representing faceted taxonomies gener-

ically would enable the quick creation of interoperable faceted components within

an interface and enable their reuse in either alternate parts of the interface or in a

different interface altogether. Although this abstraction is possible with set theory,

the notation quickly becomes cluttered and error-prone. If set theory was used to ad-

dress the question in the example above, individual sets would be necessary for each

component and additional index sets would be needed for every type of relationship

that maps one set to another set; linking nodes becomes an exercise in managing set

indices and the sets necessary for facilitating interactivity. Additionally, it is difficult

to incorporate existing work on faceted browsing due to the vast variety of models

and implementations. A modeling methodology that is capable of operating at a high

level of abstraction is necessary.

Some faceted systems, such as hierarchical faceted categories [3, 9], are imple-

mented without a true theoretical foundation [1]; in this context, categories refer to

how facets categorically index items and are not related to category theory. In gen-

eral, category theory aims to represent objects and relations at their most intrinsic,

abstract level and is appropriate for modeling problems in the sciences [10], including

computer science [11]. The volume of existing work for faceted browsing systems

lends itself to a higher degree of abstraction, where existing works can become in-

teroperable and reusable in new research settings; we integrate existing facet models

into our model in Chapter 4. In Chapter 3, we will demonstrate that category theory

is an appropriate framework for developing such abstractions by establishing facets

and faceted taxonomies as categories in the mathematical sense.

1.2 Preliminary Comments on Category Theory

On utilizing category theory, Benjamin C. Pierce writes:

“One controversial point in any discussion of the applicability of category theory

to computer science is how much of category theory people are interested in using.

Some authors [for example, Reynolds] use category theory simply as a powerful and

uniform notational framework for masses of complicated but relatively elementary

detail. On the other hand, Dybjer cites papers by Lehman, Goguen, and Burstall

where deep theorems of category theory are applied to computational situations” [12].

This thesis is partly premised on the notion that category theory provides a power-

ful and uniform notational framework for modeling faceted browsing. The challenge

is then identifying what elements of category theory are appropriate and useful in ex-
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tending the model’s categorical foundation. We further assert that modeling faceted

browsing with category theory enables reusability at two distinct levels: within a

faceted browsing system and across faceted browsing systems.

1.3 Thesis structure and contributions

Chapter 1 contains a brief introduction, a discussion regarding the motivation for our

contribution, and an outline of the structure for the thesis that details each chapter’s

contribution. Chapter 2 includes background knowledge for both faceted brows-

ing and category theory to aid the reader in comprehending the proposed category-

theoretic model presented in Chapter 3.

Chapter 3 introduces facets and faceted taxonomies as formal categories, which

intuitively can be thought of as a collection of objects and relationships between those

objects where identity and associative composition functions are well-defined. The

objects in question are collections of pointers to resources; the relationships between

objects describe the faceted structure surrounding each resource. Once the model is

established, we can leverage the abstractions for computation and show how products,

merge operations, and pushout and pullback operations can manipulate facets in a

meaningful manner. To preview utility, consider a scenario where patients are the

resources being explored and they are described by their diagnoses, their medications,

their procedures, and their lab values. If we wish to target patients who suffer from

diabetes, we could select the diagnosis code corresponding to diabetes, but because

of known medical coding quality issues, it would not identify every patient with

diabetes. It is a known issue that not every individual with diabetes will be assigned

a diagnostic code formally indicating that they have diabetes; to combat this short-

coming of the data, researchers often search for criteria that would imply that the

patient has diabetes, such as the presence of medications specific to diabetes or the

presence of lab values that would indicate that this person likely has diabetes [13].

For example, we can consider searching for patients who either have been assigned a

diagnostic code for diabetes or have a specific lab value:

Patient Diagnosis(Diabetes)

Lab(HA1C > 6.5%)

has

has

The pushout, indicated in blue below, can capture patients that meet either cri-

teria:

3
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Patient Diagnosis(Diabetes)

Lab(HA1C > 6.5%) Diabetes or HA1C > 6.5%

has

has i2

i1

p

At this point, the new facet can be referenced and used as part of the interface as

if it were in the original taxonomy. We expand upon this example in Section 3.7 and

indicate how pushouts can help construct faceted views of the underlying data, where

computed facets that do not necessarily exist can be used to address short-comings

in the original data (such as patients with diabetes being poorly coded by diagnosis

codes).

In Chapter 4, we describe how our model supports reuse at two different levels:

within a system and across systems. Within a system, the key benefit to modeling

faceted taxonomies through category theory is that we can reuse the facets and re-

frame their relationships (or morphisms) to fit our needs; if we need to arrange

the facets as graphs, we can easily do so. To encourage reuse across systems, the

essential requirement for reusing components is that a common language exists that

can bridge across components and enable communication and interactivity between

the two. We give examples of how our model could model existing faceted solutions

and unify different models together into our common framework; using a well-known

facet model as an example, we also show how to reconcile incompatibilities between

our model and existing models.

In Chapter 5, we give details on transitioning from creating reusable abstractions

to creating reusable implementations. We show that our category-theoretic model can

be mapped to a known category representing database schemas, originally introduced

by Spivak [10]. Given that there exists a mapping between facet and schemas, we give

details on how facets can be implemented within a relational database by introducing

instances of categories. We give examples of biomedical facets and show how they

are implemented after being modeled with our proposed abstractions. An additional

benefit of instances is that we can use them to model interfaces that require multiple

taxonomies and that their implementations are portable across faceted systems and

may be reused.

In Chapter 6, we further our discussion on the different requirements of faceted

browsing systems and show how interfaces that require multiple taxonomies can be

abstracted and implemented. Because the needs of interactive interfaces vary, we also

discuss two different strategies for supporting taxonomies derived from multiple het-

erogeneous terminologies: merging into a master taxonomy and maintaining multiple
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instances. To motivate the use case of merging, we discuss the open-source project

i2b2 (Integrating Biology Bench to Bedside) [14] as a hypothetical and prototypical

example from the biomedical domain where merging is a necessity.

In Chapter 7, we discuss DELVE (Document ExpLoration and Visualization En-

gine) as an example of a faceted browsing system that uses multiple taxonomies

independently without merging. DELVE is unique in that it contains visualizations

that are either controlled by facets or contain facets. We detail how to abstract

DELVE with our model by examining each component; we outline clouds, word trees,

and phrase nets and show how they can be represented with our model of faceted

browsing. The consistency that category theory provides in its language allows each

visualization to communicate with each other and this interoperability is carried down

to the implementation where each component can interact with and manipulate other

visualizations. We highlight the path from abstraction to implementation with each

visualization technique and emphasize how DELVE, as a framework, encourages each

component to be reused.

1.4 Related Publications

This thesis contains material that was presented in part at the following conferences

and journals:

1. Daniel R. Harris “ Modeling Terminologies for Reusability in Faceted Sys-

tems.” Advances in Intelligent Systems and Computing, pp 1-25. Springer,

2017.

2. Daniel R. Harris, Ramakanth Kavuluru, Jerzy W. Jaromczyk, Todd R. John-

son. “Rapid and Reusable Text Visualization and Exploration Development

with DELVE”. In Proceedings of the 2017 American Informatics Association

(AMIA) Joint Summits (CRI), pp. 1-10. AMIA, 2017.

3. Daniel R. Harris “Modeling integration and reuse of heterogeneous termi-

nologies in faceted systems.” In Proceedings of the 2016 IEEE International

Conference on Information Reuse and Integration (IRI), pp. 58-66. IEEE, 2016.

https://doi.org/10.1109/IRI.2016.16

4. Daniel R. Harris “Foundations of reusable and interoperable facet models

using category theory.” Information Systems Frontiers, vol. 18, no. 5, pp.

953-965. Springer, 2016. https://doi.org/10.1007/s10796-016-9658-6
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Chapter 2 Background

Our contributions intersect the worlds of faceted browsing and category theory. We

first discuss faceted browsing and indicate where our work falls within the scope of

faceted browsing research. We then discuss category theory and introduce concepts

that are necessary to understand the category-theoretic model that we propose in

Chapter 3.

2.1 Faceted Browsing Research

In the 1930s, S. R. Ranganathan developed colon classification, the first example of

faceted classification [1]. In colon classification, library materials are sorted using five

facets (personality, matter, energy, space, and time) [1]. As a direct consequence of

faceted classification, faceted browsing became possible.

Faceted browsing (also called faceted search or faceted navigation) is an ex-

ploratory search model, where facets assist in the navigation of search results [3].

Facets are simply attributes attached to the actual objects being explored. An exam-

ple of a facet attached to a book could be its genre or publication date. In a typical

faceted browsing system, a user is shown search results alongside a list of related,

relevant facets, allowing interactive filtering and expansion of results [2]. A faceted

taxonomy is the collection of facets provided by the interface and is often organized

as sets, hierarchies, or graphs.

A survey of faceted browsing research is summarized in Table 2.1; Wei devel-

oped four main facets of faceted browsing research: facet models, key technologies,

evaluation metrics, and faceted search systems [1].

Table 2.1: Abbreviated Summary of Faceted Research

Facet Models Key Technologies Evaluation Metrics
Theoretical basis Facet extraction Subjective metrics
Model structure Hierarchy construction Objective metrics
Interactivity Facet ranking Relevance metrics
... ... ...

Our contribution falls under the first type of faceted browsing research, highlighted

in blue in Table 2.1. Research on facet models examines the formal representation

of the faceted browsing process. Work on key technologies innovates the creation

7



www.manaraa.com

Figure 2.1: The scope of facet modeling vs human-computer interaction and cognitive
models

and navigation of faceted browsing systems. Research on evaluation metrics offers

techniques to evaluate the quality of facets generated or the system’s ability to deliver

relevant content. Not depicted in the table, the last main facet of current faceted

browsing research, “faceted search systems”, is dedicated to discussing novel faceted

browsing tools.

2.1.1 Facet Models

Most efforts in facet modeling focus on the formal representation of faceted data

and what interactive operations are made available through the model. This is sig-

nificantly different than efforts modeling cognitive processes and human-computer

interaction (HCI), yet overlaps between these two topics do exist, as illustrated in

Figure 2.1. At the heart of the overlap is the interface itself: the facet model must

map functionality to the interface and HCI/cognitive models must map communi-

cation and comprehension between the interface and the user. Unification of these

models is possible as future work and is discussed in Chapter 8.

The design of a system’s underlying model directly impacts the user’s ability to

filter, rank, and interact with the facets; in fact, some models contain no interac-

tivity [1]. Wei et al. observed three major theoretical foundations behind current

research of facet models: set theory, formal concept analysis, and lightweight ontolo-

gies. Facet modeling focuses on the formal representation of faceted data and the

interactive consequences that follow when using that model.

In the next section, we give examples of faceted browsing systems from each

type of theoretical foundation. Most of these systems were presented in a manner

similar to that illustrated in Figure 2.2, where the abstract facet model is described,

8
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Underlying Facet Model

Novel Features

and Algorithms

Implementation

Figure 2.2: Common presentation of a faceted browsing system

followed by any novel features and algorithms. Implementation is typically discussed

last, as it is least important in explaining why the interface is novel and interesting.

This demonstrates an emphasis on the importance of the model to a system and helps

justify why our modeling work should be instrumental for improving the development

of faceted browsing systems.

2.2 Faceted Browsing Systems

Faceted browsing systems enable effective use of faceted taxonomies and facet clas-

sification, the process of assigning facets to the resources to be queried. The utility

of faceted classification and faceted taxonomies is well-understood [3, 2, 6], even as

a pivotal element to modern information retrieval [15]. Facet browsing is domain

agnostic, but it is a natural fit for domains that have a rich history of ontological in-

tegration such as biomedicine [8, 16]. Faceted taxonomies can aid in the construction

of information models [17] or aid in the construction of a larger ontology [18]. We

focus on modeling faceted browsing in a way that enables the design of reusable and

interoperable faceted taxonomies within the interface.

In order to fully understand our motivation, we must discuss existing faceted

browsing models. When discussing these efforts, it is important to keep in mind that

these models were constructed for a single system with a single faceted taxonomy;

although each system was clearly an innovative and successful initiative, reusability

and interoperability with future systems was not a priority or consideration discussed.

Additionally, basic knowledge of category theory is necessary to understand our

model. We will introduce category theory in Section 2.3 using Spivak’s definition of

categories which was originally aimed toward the sciences audience [10].
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2.2.1 Foundations of Facet Models

Of the three major foundations of facet modeling, set theory efforts tend to provide

a model that explicitly includes interactive operations, such as filtering and ranking

[1]. Formal concept analysis focuses on defining facets and faceted structures for

knowledge [19] and has deep-seated roots in lattice theory in order to provide an

organizational structure to faceted browsing. Light-weight ontologies provide an easy

way to apply natural-language labels to concepts organized in an ontology [20], but

do not explicitly model interactive operations.

Any implementation of faceted browsing, whether its foundation be grounded in

set theory or lattice theory, could be abstracted into a category-theoretic framework

as objects and relations. Because natural connections between category and set the-

ory exist [21, 10], our work is most comparable to existing efforts in set theory. The

facet modeling efforts that explicitly use set theory as a foundation differ in their

core definitions and how they model filtering and ranking of facet objects: Dynamic

Taxonomies [22] is a classic way of dynamically representing taxonomies with is-a

relationships; Category Hierarchies are defined as connected, rooted directed acyc-

lic graphs [23]; Generalized Formal Models [24] use entity-relationship diagrams to

represent faceted hierarchies; FaSet [25] implements facets and queries as sets within

relational databases. Each of these implementations has its own base definition of

what it means to be a facet. In FaSet, a facet F is a set of items and if the system

has multiple facets, they are disjoint: Fa∩Fb = ∅ [25]. The model is then constructed

axiomatically using the base definition of a facet.

Simply due to their shared abstract nature, our work is also similar to efforts

based on formal concept analysis [19]. We focus on modeling faceted structures once

a representation for knowledge has been chosen, including lattices from formal con-

cept analysis; we do not compete with formal concept analysis, but rather enable its

reuse by providing a model capable of representing it consistently with other faceted

structures. In other words, a lattice can peacefully coexist and interact with sim-

pler structures such as sets and hierarchies. Many systems contain only one faceted

taxonomy, but systems like DELVE can contain multiple visualizations; these visual-

izations either contain or are controlled by independent faceted taxonomies that may

or may not share the same structure.

An example would be an interface that initially contains a visualization of a simple

dynamic hierarchy depicting basic is-a relationships; for a given node, the interface

could interactively allow one to visualize more complex relationships that are stored

in a different knowledge structure, such as graphs or lattices.

10
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demographics

age

0-9 years old

less than 1 year old

between 1 and 2 years old

. . .
10-17 years old

18-34 years old

. . .
gender

male

female

. . .
. . .

Figure 2.3: A small sample of facets available for patient medical records. For exam-
ple, selecting female would query for all patients who are female.

Another example would be augmenting a faceted taxonomy with additional facets

from an external faceted taxonomy. A more concrete example will help illustrate

how such a situation can arise naturally. At our local university hospital, our data

warehouse provides a faceted interface which allows individuals to obtain aggregate

counts of patients who match facets selected by the user; this allows quick feasibility

checks of clinical research projects. Facets are arranged as a simple hierarchy and

include items such as demographics (age, race, marital status) and vital signs (height,

weight, body mass index, blood pressure, heart rate, respiratory rate). These facets,

illustrated in Fig. 2.3, are based on what the electronic medical records (EMRs) for

our university hospital provides. In Fig. 2.3, lines represent relationships and ellipses

imply there are some relationships not shown for space considerations.

The EMR also uses drug codes that link to an external proprietary system where

drugs are organized as a two-level hierarchy. For example, as seen in Fig. 2.4,

buprenorphine is-an analgesic and an analgesic is-a central nervous system agent.

We include this external hierarchy as part of our faceted taxonomy by adding drug

as a facet. This augmentation enables one to search for classes of drugs, rather than

just the drug codes found directly in the patient’s EMR.
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central nervous system agent

analgesic

acetaminophen

aspirin

buprenorphine

. . .

anticonvulsant

acetazolamide

carbamazepine

. . .
. . .

Figure 2.4: A small sample of facets available for drug administration records. For
example, selecting analgesic would query for all records containing analgesics.

2.3 Category Theory

Category theory has been demonstrated to be practical and useful for modeling prob-

lems in the sciences [10], including physics [26], cognitive science [27], and computa-

tional biology [28]. In database theory, categories can model databases [29, 10] and

can elegantly support data migration between schemas [30]. Additionally, ologs use

category theory for representing knowledge and modeling real-world situations with

the goal of enabling reusable, transferable, and comparable research [31]. Category

theory can also be used in conjunction with semiotics as a foundation for information

visualization [32], where the process of visualization forms a category.

Because our model leverages known categories, a working knowledge of category

theory is necessary. Informally, a category C is defined by stating a few facts about the

proposed category (specifying its objects, morphisms, identities, and compositions)

and demonstrating that they obey identity and associativity laws.

Definition 1. A category C consists of the following [10]:

1. A collection of objects, Ob(C).

2. A collection of morphisms (also called arrows). For every pair x, y ∈ Ob(C),

there exists a set HomC(x, y) that contains morphisms from x to y [10]; a

12
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morphism f ∈ HomC(x, y) is of the form f : x→ y, where x is the domain and

y is the codomain of f .

3. For every object x ∈ Ob(C), the identity morphism, idx ∈ HomC(x, x), exists.

4. For x, y, z ∈ Ob(C), the composition function is defined as follows: ◦ : HomC(y, z)×
HomC(x, y)→ HomC(x, z).

Given 1-4, the following laws hold:

1. identity: for every x, y ∈ Ob(C) and every morphism f : x→ y, f ◦ idx = f and

idy ◦ f = f .

2. associativity: if w, x, y, z ∈ Ob(C) and f : w → x, g : x → y, h : y → z, then

(h ◦ g) ◦ f = h ◦ (g ◦ f) ∈ HomC(w, z).

As an example, Set is the category whose objects are sets and whose morphisms

are functions between sets [11, 10]. This implies that the set theoretic implementa-

tions of faceted browsing could also be directly abstracted and argued through cat-

egory theory; we can comment on how our model could consume other models after

we outline how our model works. The point of such structures is that they generalize

sets by specifying families of elements rather than single elements, a formalization

which enables exploration of structural similarities [10].

An easy way to construct a new category is to modify an existing category and

create a subcategory by taking a subset of its objects and morphisms. One can

think of this as simply removing some of the objects from the original category, then

removing any morphisms that have lost their domain or codomain. The two categories

behave similarly for those objects and morphisms found in both: they have the same

identities and the same composition formula [11].

Definition 2. A category B is a subcategory [11] of C if

1. Ob(B) ⊆ Ob(C)

2. for all x, y ∈ Ob(B), HomB(x, y) ⊆ HomC(x, y)

3. the identity morphisms and compositions for B are copied from C.

In our model, we will relate the concept of a facet and facet taxonomy to existing,

well-known categories: Rel and Cat.

13
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Definition 3. Rel is the category of sets as objects and relations as morphisms [11],

where we define relation arrows f : X → Y ∈ HomRel(X, Y ) to be a subset of X×Y .

In other words, any subset of X × Y is a relation from X to Y . Any binary

relation is allowed, but most examples demonstrate the utility of “<”, “≤”, and “⊆”.

This category uses the composition of relations instead of functional composition; if

f ∈ HomRel(X, Y ) and g ∈ HomRel(Y, Z), then (x, y) ∈ g ◦ f if and only if for some

y ∈ Y , (x, y) ∈ f and (y, z) ∈ g. The identity morphisms, idX ∈ HomRel(X,X), are

the so-called diagonal relationships {(x, x)|x ∈ X}. Set is actually a subcategory of

Rel [11].

Definition 4. Cat is the category of categories. The objects of Cat are categories

and the morphisms are functors (mappings between categories).

We informally defined functors as mappings between categories, but additional

conditions are needed.

Definition 5. A functor F from category C1 to C2 is denoted F : C1 → C2, where F :

Ob(C1)→ Ob(C2) and for every x, y ∈ Ob(C1), F : HomC1(x, y)→ HomC2(F (x), F (y)).

Additionally, the following must be preserved:

1. identity: for any object x ∈ Ob(C1), F (idC1) = idF (C1).

2. composition: for any x, y, z ∈ Ob(C1) with f : x → y and g : y → z, then

F (g ◦ f) = F (g) ◦ F (f).

Functors also play an important role in constructing the underlying graph of a

category, which will be a key element of creating reusable facets and faceted struc-

tures.

2.3.1 Example Category and Usage

Recall that Set is the category whose objects are sets and whose morphisms are

functions between sets [10]. Again, this implies that set theoretic implementations

of faceted browsing could also be directly abstracted and argued through category

theory. What can you do with Set? Categories often work as building blocks; in this

example inspired by Spivak [10], list functions such as a concatenation are performed

with Set. Specifically:

1. Let X = {a, b, c}, Y = {1, 2, 3}, and f : X → Y where f(a) = 1, f(b) = 2, and

f(c) = 3. (a translation)
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2. Let List : Set→ Set be a functor that maps sets to lists of sets.

3. Let List ◦ List : Set→ Set be a functor that maps Lists to List of Lists.

4. Let µX be a natural transformation of Lists of Lists to Lists (concatenation).

The relationship and transformations possible between X and Y via List opera-

tions are easily drawn. An example illustration is given in Figure 2.5 for

[
a,
[
b, c
]]
∈

List ◦ List(X). [
a,
[
b, c
]] [

a, b, c
]

[
1,
[
2, 3
]] [

1, 2, 3
]

µX

List◦List(f) List(f)

µY

Figure 2.5: An example of Set and list manipulation.

It is important to note that order does not matter: the top right path concatenates

then translates, while the bottom left path translates then concatenates.

2.3.2 Why category theory?

We mentioned that category theory has been used to model several other practical

problems in the sciences and will now discuss why it is also appropriate to model

faceted browsing. The core issue is that faceted taxonomies come in many shapes

and forms; this heterogeneity, while a sign that new and novel systems are being

developed, is counterproductive for reusing faceted information effectively. Category

theory provides the language for reasoning with these diverse structures in a consis-

tent and productive environment. Once a category is defined, it becomes a bed for

computations, such as transformations and products. As an example, consider n-ary

products of objects within a category [11], which act as a categorical version of n-ary

Cartesian products.

Definition 6. The n-ary product of a list A1, A2, . . . , An containing n objects (not

necessarily distinct) of a category is an object A with morphisms pi : A → Ai for

i = 1, . . . , n. This is denoted as A1 × A2 × . . .× An or simply
∏n

i=1Ai [11].
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We will demonstrate in the next chapter that n-ary products model faceted uni-

verses and faceted queries. Beyond products, category theory is conceptually con-

sistent with faceted browsing in that relations within a faceted taxonomy naturally

mimic the constraints of categories. Consider a faceted taxonomy with is-a relations

and observe that the following analogies hold:

1. An object has an identity function: x is-a x.

2. Relations can be composed: (x is-a y) is-a z.

3. Commutative diagrams typically demonstrate how objects and morphisms in a

category obey associativity:

w x y z
f

g◦f

h◦(g◦f)
(h◦g)◦f

g

h◦g

h

The same works for is-a-relations: ((x is-a y) is-a z) is equivalent to (x is-a (y

is-a z)).

Copyright c© Daniel R. Harris, 2017.
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Chapter 3 A Category-theoretic Model of Faceted Browsing

A faceted system is comprised of many implicitly intertwined parts: facets, a taxon-

omy that organizes the facets, an ability to select or focus on certain facets, and an

ability to present the results of a selection or faceted query in an effective manner

[1]. Each of these components and their extensions can be abstractly modeled with

category theory.

3.1 Taxonomies

We wish to be as general as possible in our abstractions so that any system with any

faceted taxonomy can be modeled, regardless of the particular nuances of the facets

and intra-facet relationships. There are two natural questions: how does one represent

any taxonomy using category theory and how does one take that representation and

augment with additional structure that supports the concepts of facets and faceted

browsing? In Chapter 2, we introduced Rel, the category of relations, and we can

restrict the morphisms of Rel to only correspond to the inclusion relations, which we

henceforth refer to as ⊆ relations:

Definition 7. Tax is a sub-category of Rel, the category of sets as objects and

relations as morphisms, such that Ob(Tax) = Ob(Rel) and morphisms are relations

that correspond only to ⊆ relations. The identity and composition definitions are

inherited from Rel.

The other relations that could possibly be represented by Rel, such as “<” and

“ ≤”, are meaningless for categorically organizing concepts into a taxonomy. In

other words, Tax is just a slimmer version of Rel, where we know exactly what

binary relation is being used to order the objects. By itself, Tax is not particularly

helpful for modeling faceted browsing: faceted browsing is piloted by interacting with

disjoint collections of facets, which we will refer to as facet types. This will allow us

to apply the additional structure and granularity needed to support faceted browsing.

3.2 Facet Types

The faceted taxonomy presented in an interface can contain several unrelated (or

disjoint) sub-facets. For example, a book’s price typically has nothing to do with
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R

R

R

R

 ...

R

0

1

2

3

n

Figure 3.1: An illustrative example of a Faceti category shows a basic exemplative
structure of the facets within this facet type. The objects are sets of pointers to
resources classified as that particular facet type. For convenience, only pointers from
leaf nodes have been drawn.

its genre, and the construction and maintenance of the corresponding taxonomic

structures are completely independent. We can refer to a facet, such as price and

genre, as a facet type. An interface typically presents facets underneath a heading

that indicates its type. One may want the interface to include the name of the type

as a selectable facet. This meta-facet is mostly an organizational tool that aids in

drawing the faceted taxonomy. We formally defined meta-facets in Chapter 6 as part

of our category-theoretic model of faceted browsing.

Within a facet type, facets are directly relatable and comparable. In other words,

for our example, prices relate to prices and genres relate to genres; “$10-$20” can be

a child of “ < $100”, but has no relationship with “horror”. Figure 2.3 shows a facet

type for patient demographics; Figure 2.4 shows a facet type for medications. Demo-

graphics and medications are clearly disjoint: no taxonomic relations exist between

these two types.
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...

...

Figure 3.2: We draw the same exemplative facet type from Fig. 3.1 within the larger
taxonomy. The facet types (illustrated as rectangular regions) act as groupings of
objects that we can use as conceptual building blocks later in our model.

Theorem 3.1. If there exists a category Tax having sets as objects and inclusion

relations as morphisms, then there exists a subcategory of Tax called Faceti, repre-

senting facet types (a facet i and its related sub-facets).

Proof. Take Faceti to be a sub-category of Tax such that Ob(Faceti) ⊆ Ob(Tax).

For every pair of objects (x, y) ∈ HomFaceti(x, y), there exists (x, y) ∈ HomTax(x, y)

that are inclusion mappings that relate a facet to its ancestor. Additionally, the

relevant identity and composition definitions are inherited from Tax.

As seen in Figure 3.1, the objects of Faceti are sets which represent abstract

collections of resources that have been classified to belong to that facet through

faceted classification. With that being said, we do not need to distinguish between

individual resources within these sets because they all categorically behave the same

when manipulating objects: they either belong to a facet or they do not. Between

the objects of Faceti, morphisms exist which dictate their taxonomic relationship.

Figure 3.2 shows facet types in the context of a larger taxonomy; multiple facet

categories exist and linkages between them may or may not exist.
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As a concrete example, if FacetMed is the medication facet-type displayed in

Figure 2.4, then {“central nervous system agent”, “analgesic”, “buprenorphine”,

. . . } ∈ Ob(FacetMed). The morphisms of FacetMed dictate the relationships be-

tween objects. Suppose that object x is the set for “analgesic” and object y is

the set for “central nervous system agent”, then there exists a morphism f : x →
y ∈ HomFacetMed

(x, y), meaning “analgesic” is-a subset of “central nervous system

agent”.

The ⊆ relation is powerful for specification: it allows for facets to be ordered by

inclusion, which can model any structure where x is related to y; this is a pivotal

component to most faceted implementations. We intentionally use the words speci-

fication and implementation; our category-theoretic model specifies the fundamental

objects and relationships that our implementation can utilize. For example, we can

implement a tree that only has is-a relationships since it is possible to order the facets

by inclusion. We will show how this type of tree, which is heavily related to dynamic

taxonomies [22], can be represented with category theory in Chapter 4. In a more

complicated example, one could construct a visualization with a graph, where the

current facet is recursively drawn connected to a subset of its subsumptive facets. In

terms of designing an interactive interface for faceted browsing, the graph could be

animated to highlight desired facets.

3.3 Focused Selections with Facets

Given a facet, we need to describe how any selection within the facet can be modeled.

Corollary 3.1.1. We can create a subcategory of Faceti, called Focusi, to represent

a focused selection of objects from Faceti having Ob(Focusi) ⊆ Ob(Faceti) and the

necessary corresponding morphisms, identity, and composition definitions for those

objects.

We simply discard any undesirable objects (and their corresponding morphisms)

to create a new category that represents a focused collection of facets. The identity

and composition functions can be copied from Faceti. Selecting objects in facet type

is the simplest form of interacting with a faceted browser. As a concrete example, if

FacetMed is the medication facet-type in Figure 2.4, then one possibility is {“central

nervous system agent”, “analgesic”} ∈ Ob(FocusMed). There is no limit on the

number of objects kept or discarded; it is possible to discard all objects or to keep all

objects, although practical limitations may stem from the user’s ability to interact

with the interface.
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patients

demographics

age

0-9 years old

10-17 years old

18-34 years old

. . .
. . .

medications

analgesic

acetaminophen

aspirin

buprenorphine

. . .
. . .

. . .

Figure 3.3: A faceted taxonomy, called patients, containing facet types of demograph-
ics and medications.

3.4 Faceted Taxonomies

Presentation of facets varies according to the interface’s design, but facets are com-

monly presented as flat lists (through widgets such as radio buttons, check-boxes, etc)

and hierarchies. Hierarchies, if restricted to be non-overlapping, are often represented

as a tree where each facet is limited to having one parent. A non-hierarchical (or flat)

facet is a special case of a hierarchical facet: it is simply a hierarchical taxonomy with

one level. For example, if authors of books were a primitive facet, it could be repre-

sented as a hierarchy with author as the root and individual names as children. More

complicated faceted interfaces may present taxonomies via visualizations, including

graphs and network diagrams.

Theorem 3.2. Suppose there exists categories for facet types Faceti,Faceti+1, . . . ,Facetn,

then there exists a category FacetTax, representing a faceted taxonomy containing

Faceti,Faceti+1, . . . ,Facetn as objects.
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Faceti Facet i+1

Focus i Focusi+1

FacetTax

U = Facet           Facet             ...i+1

i

i
Q = Focus           Focus             ...i+1i

Figure 3.4: A high-level overview of FacetTax, Faceti, Focusi, and queries with
focused subcategories.

Proof. Take FacetTax to be the disjoint union of Faceti categories, then the ob-

jects are defined as Ob(FacetTax) =
⊔n
i=1 Faceti and n = |Ob(FacetTax)|. The

morphisms of FacetTax are functors (mappings between categories) of the form

HomFacetTax(C,D) = {F : C → D}. For any given C ∈ Ob(FacetTax), there exists

an identity function because C is a category by definition. Given functors {F : C →
D} and {G : D → E}, then G ◦ F : C → E by Ob(G) ◦ Ob(F ) : Ob(C) → Ob(E)

and HomG ◦ HomF : HomC → HomE . Furthermore, given functors {F : C → D},
{G : D → E}, {H : D → E}. then ((H ◦G))◦F ) = (H ◦ (G◦F )). Given that identity

is well-defined and composition is associative, FacetTax is a category.

This disjoint union is precisely how we can merge facets from Figure 2.3 and

Figure 2.4 into a single faceted taxonomy, patients, as illustrated in Figure 3.3. To

save space, not all objects and relations are drawn. It is technically not necessary to

formally prove that FacetTax is a true category because it is simply a sub-category

of Cat, the category of categories. FacetTax acts as a highly structured version of

Tax, where the objects are categories instead of objects; this additional structure

allows us to model higher-level concepts such as faceted queries.

22



www.manaraa.com

3.5 Facet Universe and Faceted Queries

The complexity of a faceted system naturally varies by the interface’s design, but

typically includes the ability to select (or focus) and de-select (or negate) facets

within a facet type. The collective effort across all facets is then used to filter the

faceted knowledge being presented.

Corollary 3.2.1. A facet universe, U , is the n-ary product [11] within the FacetTax

category, defined as
∏n

i=1 Faceti, where n = |Ob(FacetTax)|. The n coordinates of

U are projection functors Pj :
∏

Faceti → Facetj, where j = 1, . . . , n is the jth

projection of the n-ary product.

Note that since Focusi is a subcategory of Faceti, there exists a restricted universe

U⊆ ⊆ U where every facet is potentially reduced to a focused subset. The act of

querying the universe is essentially constructing this restricted universe U⊆.

Corollary 3.2.2. A faceted query, Q, is the modified n-ary product [11] within the

FacetTax category, defined as∏n
i=1Focusi, where n = |Ob(FacetTax)|. The n coordinates of Q are similarly

defined as projection functors Pj :
∏

Focusi → Focusj.

A high-level overview of the interactions between Faceti, Focusi, and queries

with the FacetTax category is illustrated in Figure 3.4. To summarize, a faceted

taxonomy is a category which contains Facet categories as objects; each Facet cat-

egory contains objects and taxonomic relationships between the objects. Intuitively,

focused selections are contained within their larger, unfocused facet categories. The

universe of possible facets provided by the interface is the product across all Facet

objects; a faceted query is simply a focused product chosen by the user from the

universe of facets.

This implies that our model can represent states of interfaces that a user has inter-

actively reached, which is a pivotal step in abstracting the interaction process within

a faceted browsing system. Our model attempts to fill a void in human-computer in-

teraction by providing abstractions that can consistently represent components of an

interface for algebraic manipulation. Our model takes advantage of how intertwined

a faceted browsing system is with its underlying faceted taxonomy and allows us to

extend structural abstraction of a faceted taxonomy into the abstraction of faceted

interfaces in general.
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3.6 Pullback Operations

Recall that the objects of each Faceti categories are sets of pointers toward resources

which have been classified as belonging to a particular facet. Our model can create

higher-level faceted groupings from existing facets by leveraging categorical pullback

operations.

Corollary 3.2.3. Categorical pullback operations, also known as fiber products [10],

model interactive conjunctions of Faceti and FacetTax categories, yielding new facet

types that are not available directly in the taxonomy.

In order to demonstrate creating new facet types from conjunctions, we must

formally define pullbacks.

Definition 8. Given sets A, B, C ∈ Ob(C) for some category C, a pullback of A and

B over C is any set D where an isomorphism A ×C B → D exists for A ×C B =

{(a, b, c)|f(a) = c = g(b)}; this is illustrated below, using Spivak’s y-notation to label

the pullback [10]:

(a)

B

A C

g

f

(b)

A×C B B

A C

π2

π1

y
g

f

(3.1)

The result of a pullback is easily illustrated with an example. If horror and comedy

belong to the facet type for genres of either movies or books, then we can draw the

relationships between horror and comedy easily:

Horror

Comedy Genre

is

is

(3.2)

We derive a new set that we can label horror and comedy by applying the pullback

to the set of horror and the set of comedy objects:

Horror and Comedy Horror

Comedy Genre

π2

π1

y
is

is

(3.3)

This forms a new set of objects being characterized by a conjunctive facet not

directly found in the facet type; we could even give this new set a new semantic

name: comedic horror.
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If we apply the pullback to the set of romance and the set of comedy objects, we

derive a new set that we can label Romance and Comedy :

Romance and Comedy Romance

Comedy Genre

π2

π1

y
is

is

(3.4)

Note that this forms a new set of objects being characterized by a conjunctive facet

not directly found in the facet type; we could even give this new set a new semantic

name: romantic comedies or rom-coms. This direct semantic name for groupings

indirectly found within the data can become an engaging element of the interface

and removes the possible limitation that only facets from the taxonomy can interact

with the user.

The projection functions π1 and π2 may look trivial: a comedic horror title is

clearly a comedy and clearly a horror title. Despite simplicity in appearance, the

utility of the projection functions π1 and π2 mapping back to the original facets can

be seen with faceted cues: for example, we can use π1 to highlight comedic horror

titles within the horror titles.

In Section 6.2.2, we introduce an existing faceted browsing system called i2b2 [14]

as an example of an interface that requires multiple merged terminologies, but it is

also an example of a faceted browsing system that targets healthcare data. A common

goal within i2b2 is to identity groups of patient cohorts by dragging and dropping

facets from a master taxonomy. A clinical researcher can quickly refine Boolean

queries targeting patient populations; often these queries have a base population that

can be specified as a conjunction. For example, a clinical researcher studying patients

with breast cancer who have undergone a mastectomy procedure needs the ability to

quickly reference such a population. We diagram what the data provides below:

Procedure(Mastectomy)

Diagnosis(BreastCancer) Patient

belongs to

belongs to

(3.5)

If we apply the pullback to the category of procedure (Mastectomy) and the cat-

egory of diagnosis (Breast Cancer), we get a new category that we can label Breast
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Cancer and Mastectomy :

Breast Cancer and Mastectomy Procedure(Mastectomy)

Diagnosis(BreastCancer) Patient

π2

π1

y
belongs to

belongs to

(3.6)

This new category becomes an interactive element that can be reused within the

interface; within i2b2, conjunctions can be annotated with a friendly human-readable

name and can be shared across users.

Suppose we have a faceted taxonomy for patients that contains, among other facet

types, patient procedures and diagnoses:

Procedure(Amputation)

Diagnosis(Diabetes) Patient

belongs to

belongs to

(3.7)

If we apply the pullback to the category of procedure (amputation) and the cate-

gory of diagnosis (diabetes), we get a new category that we can label Diabetes and

Amputation:

Diabetes and Amputation Procedure(Amputation)

Diagnosis(Diabetes) Patient

π2

π1

y
belongs to

belongs to

(3.8)

In fact, we can assign a new semantic name to this pullback, diabetic amputees,

thus giving us facet types that do not appear directly in the faceted taxonomy. In

the next section, we will demonstrate that pushouts help construct new facets from

disjunctions.

3.7 Pushout Operations

Our model can assist in computing ad-hoc facets that attempt to compensate for

short-comings in either the terminologies involved or the underlying data. For exam-

ple, if the exact desired facet does not exist but its logical disjunctive components

do, then it can be manufactured via pushout operations.

Corollary 3.2.4. Categorical pushout operations, also known as fiber sums [10],

model interactive disjunctions of Faceti and FacetTax categories, yielding new facet

types that are not available directly in the taxonomy.
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In order to show the expressiveness of pushout operations, we must formally define

a pushout. We will then show how pushouts yield collections of objects projectable

into Focus categories; in essence, pushouts within Facet demystify how Focus cat-

egories can be created interactively via selection.

Definition 9. Given sets A, B, C ∈ Ob(C) for some category C, a pushout of sets

B and C over A is any set D where an isomorphism B tA C → D exists; this is

illustrated below, using Spivak’s p-notation to label the pushout [10]:

(a)

A C

B

g

f (b)

A C

B B tA C

g

f i2

i1

p
(3.9)

It is important to note that B tA C was formed by the quotient of the disjoint

union of A, B, C and an equivalence relation on B and C with A. An example will

help demonstrate the utility of pushouts. If we return to our example with genre as

a facet type, we can arrange our objects and morphisms so that the pushout reveals

titles that are comedy or romance:

Genre Comedy

Romance Comedy or Romance

has

has i2

i1

p
(3.10)

This new facet, comedy or romance, contains all titles classified as either belonging

to comedy or belonging to romance facets. The mappings i1 and i2 are sometimes

called co-projections or inclusion mappings [10] and simply map the objects onto its

larger disjunctive facet.

Pushout with FacetTax

Similar to our discussion on pullbacks with FacetTax, we can discuss pushouts.

Again, the objects of FacetTax are complex Facet categories. If we revisit our

faceted taxonomy example of a patient with diagnoses and procedures, the pushout

becomes:

Patient Diagnosis(Diabetes)

Procedure(Amputation) Diabetes or Amputation

has

has i2

i1

p
(3.11)
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We can call this new facet diabetics or amputees, again, giving a new semantic anchor

to a class of resources that would not be directly found in the faceted taxonomy.

Hypertensive patients are woefully under-diagnosed and relying solely on diagnosis

codes to locate patients with hypertension is problematic [33]. In addition to diagnosis

codes, vital signs are either recorded by physicians and nurses or recorded by machines

at given intervals; these measurements can be used to determine an individual’s

hypertensive state [33]. Recall that our resources for i2b2 are patients; patients can

have diagnoses and vitals signs:

Patient Diagnosis(Hypertension)

V ital(BP > 140/90)

has

has (3.12)

We compute the pushout and receive a single anchor for those individuals that

were either coded to have a hypertension diagnosis code or that were recorded having

high blood pressure:

Patient Diagnosis(Hypertension)

V ital(BP > 140/90) Hypertension or BP > 140/90

has

has i2

i1

p
(3.13)

The pushout acts as a convenient, derived facet that the user can interact with

just like any other facet. In i2b2, the disjunction between diagnoses codes and vital

signs can be performed without the pushout because the interface itself allows for

Boolean queries to be performed by dragging and dropping any facet into its query

window. The value of the pushout is simply for convenience and reuse: when the

pushout is used by multiple people, the context of a patient with hypertension is

made clear and reusable.

We slightly modify the original diabetes example and substitute lab results for

procedures:

Patient Diagnosis(Diabetes)

Lab(HA1C > 6.5%)

has

has (3.14)

In an electronic health system, not every diabetic patient will be assigned a diagnostic

code indicating that they have diabetes; to compensate for this, clinical researchers

often search for criteria that would imply that the patient has diabetes, i.e, patients
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that either take medications known to treat diabetes or that have consistent lab results

that indicate that they likely have diabetes [13]. For example, hemoglobin A1C test

results above 6.5% are typically indicative of diabetes or early onset diabetes. If we

construct a pushout operation, then we can help compensate for shortcomings in the

data:

Patient Diagnosis(Diabetes)

Lab(HA1C > 6.5%) Diabetes or HA1C > 6.5%

has

has i2

i1

p
(3.15)

We can call this new set simply diabetics, as defined by those patients formally di-

agnosed with diabetes by a healthcare professional or those patients with laboratory

results which indicate they likely have diabetes. The faceted taxonomy does not need

to know ahead of time what possible disjunctions are relevant to the user; storing

disjunctions would be ineffective when a lightweight pushout operation could derive

the same result interactively with the user.

3.7.1 Focusing via Pushout Operations

Recall that Focus subcategories of Facet where Ob(Focusi) ⊆ Ob(Faceti) are sim-

ply focused collections of objects. The disjunctive nature of pushouts make them an

appropriate construction for realizing Focus categories from Facet categories.

Corollary 3.2.5. Pushout operations create focused subcategories.

Proof. Given a series of pushout constructions p0, . . . , pn having inclusions i1p0, i2p0, . . .,

we can take from the common domain of the projections to build the objects of Focus:

Ob(Focusi) =
n⊔
j=1

dom(i1pj) t dom(i2pj)

The morphisms of Focus are simply those from Facet whose domain and codomain

exist in Focus after construction.

3.8 Faceted Views

Returning to our previous healthcare example, there are existing standards for record-

ing patient data, such as diagnoses and lab results. These standards can help form

the faceted taxonomies behind clinical research interfaces designed to locate patients
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Figure 3.5: Faceted views can provide convenient, derived facets for interactivity.

of interest. Pushouts can derive faceted views on top of the taxonomy, providing

desirable facets without disrupting or modifying the underlying standards. In other

words, we can reuse data standards swiftly and construct an additional layer of facets

that directly answers the needs of the interface; for example, this layer could be ab-

stract representations of patients with diabetes, as determined by their medications

and lab values as indicators of who likely has diabetes [13].

We can construct commonly-used patient cohorts via pullback and pushout op-

erations: diabetic, hyptertensive, and chronic kidney disease (CKD) patients. CKD

suffers from an issue similar to hypertension: diagnostic codes are not always used

and might not capture the true disease state of the population, but laboratory results

can predict CKD, including the disease’s stage [34].

In Figure 3.5, we show that pushouts can create new facets from existing ones in
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order to better address the needs of the interface. We create a facet for a hypertensive

cohort by the pushout of diagnostic codes for hypertension and qualifying vital signs;

we also create a cohort of CKD patients by considering CKD diagnostic codes and

qualifying eGFR lab results. d1 and d2 are inclusion maps for the hypertensive cohort,

while c1 and c2 are inclusion maps for the CKD cohort. The underlying taxonomies

for patient data are large, having up to tens of thousands of nodes. The ability

to create faceted views on top of the standard taxonomy will greatly improve the

usability of the interface by providing the most meaningful facets to retrieve the

desired resources.

Implementation of faceted views such as the one illustrated in Figure 3.5 requires

the ability to represent multiple faceted taxonomies because patients can have diag-

noses (from the ICD10 terminology) and vitals signs (from the LOINC terminology).

We will expand upon this by introducing instances in Chapter 5.

3.9 Clarification of Benefits and Obstacles

In Section 2.3.2, we discussed why category theory is a good fit for modeling faceted

structures in general; it is also important to identify what falls within the scope of our

model and what does not. Our goal is to provide a common language and notation

for describing faceted browsing interfaces in order for novel features or components

to be reused intelligently and become interoperable with other features; we dedicate

Chapter 4 to the notion of reusability within a system and we dedicate Chapter 5 to

the notion of reusability across systems and implementations.

3.9.1 Efficiency and Scale

The objective of our model is not related to efficiency or speed of a particular interface,

although we do discuss existing efforts in measuring computational complexity in

Section 4.2.6. Our desire is to assist the developer of faceted systems in designing and

developing in an efficient manner by encouraging reusable components, more-so than

encouraging efficient components. The scale of the faceted taxonomy has no bearing

on the abstractions offered by the model: a small taxonomy is a collection of objects

with relationships just as much as a large taxonomy is a collection of objects with

relationships. We have seen in our related work that the size of a very large taxonomy

is still dwarfed by the size of the data that it describes [35]. To give an example of

a large taxonomy, consider that the Systematized Nomenclature of Medicine Clinical

Terms (SNOMED CT) [36, 37] contains a few hundred thousand concepts describing
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over a million medical terms; although large in comparison to other terminologies,

the scale of SNOMED CT is often eclipsed by the size of the data it describes, which

in the case of health data could contain billions of records [35].

3.9.2 Assumption of Classification Stage

Our model also assumes that the raw data has successfully undergone faceted clas-

sification so that assets are associated with facets. Our model is a theoretical facet

model for faceted browsing and not faceted classification, which is a different pro-

cess and falls into an alternative branch of faceted research. Of the existing systems

identified and discussed in Chapter 2, none encompass faceted classification. The un-

stated assumption for these systems is that assets are classified and the system being

discussed is exploring those assets in a novel and interesting manner. For biomedi-

cal data, facets such as demographics and disease states are either collected during

a healthcare visit or assigned as a result of being billed for a healthcare visit. In

this sense, the patient records are already classified according to how the electronic

medical record has recorded the basic facts and observations of their medical visit.

3.9.3 Assumption of Taxonomy Existence

Because the data is already classified with facets, we also assume that a faceted

taxonomy appropriate for the data set exists. The relationships in faceted browsing

systems are largely taxonomic with parent-child relationships that provide structure

to the resources being browsed, but any faceted relationship that can be represented

as a graph can be utilized. In Chapter 4, we explore how graphs interact with our

model. Facet extraction and automation of the construction process of a taxonomy

is a different area of faceted research, as identified by Wei and as summarized in

Table 2.1. These other areas of faceted research can be explored in addition to our

theoretical model and would consequentially impact how algorithms are developed.

3.9.4 Barriers to Adoption

The largest barrier for adoption of our model is the willingness of others to use a

model that requires a basic understanding of category theory. We acknowledge that

the learning curve for category theory can certainly be an impediment of adoption by

those less familiar with the theory; we argue that any solution that bridges barriers

across models of faceted systems will require careful abstraction and will consume

just as much energy to understand and to be consistent and correct. We believe

32



www.manaraa.com

the benefits, such as the arguments of reuse and interoperability presented next in

Chapter 4, outweigh the obstacles. The emphasis on reuse allows us to construct

category-theoretic representations of existing facet models and systems; if we want to

incorporate a novel component or feature of an existing facet model, we are able to

view it through a category-theoretic lens. This implies that the barrier to adoption

is not necessarily on those designing faceted systems but rather on those who wish

to integrate, unify, and reuse multiple systems.

Copyright c© Daniel R. Harris, 2017.

33



www.manaraa.com

Chapter 4 Reusability

Our category-theoretic model enables reusability at two different levels: within a

faceted browsing system and across faceted browsing systems. We will discuss each

of these types of reuse in the following sections and describe why category-theory

plays a fundamental role in each.

4.1 Reuse within a Faceted Browsing System

Because our model’s category theory foundation, we may reuse objects within a

faceted category and change the structure of their relationships according to the

needs of the faceted system. For example, if it is more convenient to represent facets

as graphs instead of sets in order to produce a visualization, we are free to compute

the graph representation and category theory gives us the precise language to do so.

In our model, categories are acting as generic faceted structures, but in practical

interface development, more is sometimes needed to support the range of possible

designs and interactions. The generic nature of the morphisms of FacetTax allow

it to abstractly represent any faceted taxonomy structure since the morphisms are

simply ⊆ relations.

We demonstrated that n-ary products were one useful computation enabled by our

model, but we can also demonstrate how our base structure can transform to support

different faceted structures, such as lists, hierarchies, trees, graphs, and lattices. This

transformation can be an active and engaging element of the interface: a selected

element from a basic list could render a graph of deeper relationships. Using Figure 3.3

as an example, suppose that a preview of high level facet types are given in the form of

a list (demographics, medications, . . . ) and interactively selecting one of these higher

level items results in the rendering of its remaining taxonomy. For example, clicking

on demographics could draw the descendants of that object from the taxonomy in

the interface.

Intelligent previews are a possible solution to the problem of having too little

screen space to fully display an interface’s facets, which is a known issue in faceted

browsing research [1]. We can reuse the same facets, while manipulating their re-

lations to fit other structures. These structures can be put into the same abstract

framework to support interoperability between systems or between parts within a

system. When designing a system where different structures interact with one an-
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other, the notation and representations become cumbersome. The burden of writing

consistent abstractions with different structures is removed by using category theory.

4.1.1 Underlying Graphs

In order to show how graphs relate and interact with our model, we must formally

define the category of graphs, for which we follow [10].

Definition 10. Grph is the category with graphs as objects. A graph G is a sequence

where G := (V,A, src, tgt) with the following:

1. a set V of vertices of G

2. a set A of edges of G

3. a source function src : A→ V that maps arrows to their source vertex

4. a target function tgt : A→ V that maps arrows to their target vertex

An alternate way to represent a category is by noting it as a sequence of its

constituent parts, e.g, a category C = (Ob(C), HomC, dom, cod, ids, comp), where

dom, cod : HomC → Ob(C) are domain and codomain functions, ids are identity

functions, and comp are compositions. This notation easily lets C be represented as a

graph; in fact, some literature begins discussing categories as graphs first [11]; in this

context, morphisms are typically called arrows and they map from a source (domain)

to a target (codomain).

Definition 11. The graph underlying a category C is defined as a sequence U(C) =

(Ob(C), HomC, dom, cod) [10].

Note that U(C) ∈ Ob(Grph) and there exists a functor between categories F :

C → D that can create a graph morphism U(F) : U(C) → U(D). This works at

two levels for our model: for FacetTax and for each Facet category. Given that

there exists a functor U : Cat → Grph, FacetTax can produce graphs of Faceti

categories for i = (1, . . . , |Ob(FacetTax)|).
Because every category has an underlying graph, each individual Facet can also

be represented as a directed graph, where the objects are vertices and the morphisms

are arrows from one vertex to another vertex. Although the taxonomy in Figure 3.3 is

likely best visualized as a simple hierarchy, other taxonomies might be more naturally

suited to be represented as a graph. One possible use case is where graph algorithms

might play a key role in the interface’s design.
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Figure 4.1: For graph-based faceted interfaces, paths are a simple way to abstractly
model breadcrumbs. The above shows a breadcrumb f from a head-to-tail sequence
of f0, f1, and f2 arrows from a Focus category in FacetTax.

The key benefit to modeling our faceted taxonomy through category theory is

that we can reuse the facets and re-frame their relationships (or morphisms) to fit our

needs; if we need to arrange the facets as graphs, we can do so. The sets of resources

that the objects of Facet represent remain unchanged; resources are still classified

with their facets as illustrated in Figure 3.1. This embedded, faceted information

can be reused through an alternate lens made possible by our model. In this case,

the lens is a graph that was algebraically constructed, but other structures are also

supported such as sets and lattices. Each structure has its own set of benefits; for

example, graph representations allow the study of paths. The model remains agnostic

to what representation is most desired; the important notion is that representation

can change to adapt to the needs of the interface.

In the next section, we will discuss paths and comment on using sets and lattices.

Using category theory as a common language ensures interoperability within a model

even when using different faceted structures.

4.1.2 Paths

When considering the graph underlying FacetTax or Faceti, paths can play a role

in modeling interactive components within an interface.

36



www.manaraa.com

Definition 12. If G := (V,A, src, tgt) is a graph, then a path of length n in G, is a

head-to-tail sequence of arrows and is denoted p ∈ Path(n)G , where PathG is the set of

paths of any length in G [10].

In Figure 4.1, we use paths as a simple example for modeling breadcrumbs, which

have been identified as a key element of faceted search interfaces [38]. In this case,

a path within a focused subcategory represents a possible navigation route from the

set of all navigation paths, PathFocus. We will show in Section 4.2.4 that paths can

be used in useful calculations within a category.

4.1.3 Sets

Rel is closely related to Set; both categories have sets as objects. In fact, it

can be demonstrated that Set is a subcategory of Rel [11] and we will utilize

this notion to show that each Faceti is compatible with Set. We can construct

a functor F : Faceti → Set, where F : Ob(Faceti) → Ob(Set) and for every

(x, y) ∈ HomFaceti(x, y) where x is related to y, we can construct a function f(x) = y

where an object is mapped to its ancestor in Set.

Similar to how we can construct graphs, we are also free to leverage Set categories

and can construct basic sets. This is helpful when a flat list needs to be constructed

from our taxonomy, such as in the case of the previews discussed in the first part

of Chapter 4. In Section 4.2.1, we discuss several existing facet models that use set

theory as a theoretical foundation and demonstrate how our categorical model can

enable their reuse.

4.1.4 Other Structures

Additionally, Rel is capable of representing lattices when ordering by inclusions [11]

and a similar result can be obtained with our Facet categories. Again, a functor is

how we can compute such a mapping between categorical representations. Category

theory is providing two types of computation: within a category with concepts, such

as products, and across categories with concepts, such as functors.

4.2 Reuse across Faceted Browsing Systems

We demonstrated that facets can be reused within a single system in the previous

section because category theory gives us the ability to rearrange the structure of the

relationships as needed. In this section, we focus on reusing components and concepts
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across faceted browsing systems. The essential requirement for reusing components

is that a common language exists that can bridge across components and enable

communication and interactivity between the two.

4.2.1 Reusing Existing Facet Models

We discussed several existing modeling efforts in our background section and we can

now discuss how such models would change and manifest under our category-theoretic

model.

4.2.2 Dynamic Taxonomies

Dynamic taxonomies [22] use set theory as a theoretical foundation to help model

facets. The model constructs taxonomies with is-a relationships by dynamically

calculating the deep extension of a node:

deep(C) = {d|d ∈ shallow(C′)

∧ (C′ = C ∨ C′ is a descendant of C)} (4.1)

The shallow extension of C contains the direct descendants of C. Both shallow

extension and descendant-of relationships are expressible as binary relations and, in

particular, are expressible with the binary relations of FacetTax’s Facet categories.

The shallow extension of an object y ∈ Ob(Faceti) is the domain of the relations of

HomFaceti(x, y), e.g. all x that are subsets of y:

shallow(y) =
⋃

x∈Ob(Faceti)
x 6=y

dom(HomFaceti(x, y)) (4.2)

Intuitively, we can think of the deep extension as the nested shallow extension,

meaning we are free to construct HomFaceti(x, dom(HomFaceti(y, z))) and so on. We

can formalize this as a recursive union, so for any y ∈ Ob(Faceti), we must look at

all x ∈ Ob(Faceti) where x is in the shallow extension of y.

In other words, to calculate the deep extension of y, we must recursively aggregate

all x where x is a direct descendant of y:

deep(y) =
⋃

x∈Ob(Faceti)
x∈shallow(y)

shallow(y) ∪ deep(x) (4.3)

The recursion stops when a leaf node is touched and the shallow extension of the

object is the empty set. The leaf nodes only have an identity morphism where the

38



www.manaraa.com

domain and codomain is itself; this morphism is sometimes omitted when drawing

taxonomic relations. We exclude this morphism by constraining the shallow extension

to consider only those x ∈ Ob(Faceti) where x 6= y, which in turn ensures that the

recursion will end when calculating the deep extension. Ultimately for a leaf node y,

there will be no x ∈ Ob(Faceti) such that x is in the shallow extension of y. We are

free to also include or exclude an object in the deep extension of itself, depending on

what is most convenient for the faceted interface’s design.

4.2.3 Category Hierarchies

Category hierarchies are another example of facet models with set theory as a foun-

dation [23]. In this model, category hierarchies are defined as connected and rooted

directed acyclic graphs; the word category is unrelated to category theory in this

context.

More specifically, a category hierarchy is defined as a sequence H(rH , CH , EH) rep-

resenting a rooted and directed acyclic graph, where rH is a designated root category,

CH = {c} is the set of categories in the hierarchy, and EH = {c → c′} is the set of

category to subcategory relationships [23]. Facets are defined as subgraphs of the cat-

egory hierarchy. We add a root category to our definition for underlying graphs in Sec-

tion 4.1.1 and build a new sequence whereH(Ob(FacetTax), HomFacetTax, dom, cod, r)

represents the category hierarchy. Facets are objects of FacetTax instead of direct

subgraphs, but we can reuse the underlying graph notation to define a facet as a

sequence Fi(Ob(Faceti), HomFaceti , dom, cod, ri) to create the graph underlying the

Faceti category at some root ri. At this point, we are free to leverage the deeper

parts of the model using our facet graphs, such as measuring cost of navigational

paths and facet similarity.

4.2.4 FaSet

There exist large differences between facet models even if they share the same the-

oretical foundation such as set theory. In FaSet [25], a facet F is a set of items; in

systems with multiple facets, they are disjoint: Fa ∩ Fb = ∅. The items in the set

represent labels for that facet. A focus L is a named subset of F : L ⊆ F , where the

name is a nullable, variable-length list of indexes: L〈i, j, k, . . .〉. The classification of a

resource r is the subset of F that is relevant, denoted as r ⊥ F . A sharp classification

is a classification for some set of focus names P that can be expressed as a union of
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foci: ∃P : r ⊥ F =
⋃
p∈P L〈p〉. This model allows classifications to be written as

easily implementable lists.

FaSet is purely a set-based model of faceted browsing. Differences between the

models must be reconciled in order to inject the features of FaSet into FacetTax.

The following differences must be noted:

1. The most primitive difference is that in FaSet a facet is a set of items (labels)

while in FacetTax, a facet is a category. Many of the following differences are a

direct result of FacetTax containing objects and relationships; mainly, it does

not require external operators and special notations to reference relationships.

2. Because of FaSet’s set-based foundation, its model must provide a set-based

method of classifying resources with facets; it introduces custom notation to

achieve this: r ⊥ F for classifying a resource r with facet F . The objects

of FacetTax are sets and represent abstract collections of resources that have

been classified as belonging to that facet through faceted classification. In other

words, FacetTax embeds the link to resources into its structure; the relation-

ships between objects dictate the nature of their taxonomic relationships.

3. In FaSet, focusing is performed by creating lists of indexes on a facet. They

introduce an indexing notation L〈i, j, k, . . .〉 for a focus of L where L ⊆ F . We

abstract the concept of focusing and create a Focus category.

4. Because sets are flat structures, FaSet must and successfully does demonstrate

that it is capable of handling facets with varying structure (flat, hierarchi-

cal, nested) and dimension (single or multiple). This is not necessary with

our model: any object can hold any relationship with any other object. In a

category-theoretic model, we do not need to name specific objects and local

relationships are generic between each object: x is-a y, which can ultimately

create flat, hierarchical, and nested structures.

The primitive aspects of FaSet are replaced by the structure naturally given by

FacetTax and the related Faceti categories. This helps avoid the need for creat-

ing custom notation. Once conceptual differences are reconciled, key elements and

extensions of the model can be rephrased. For example, calculating focus similarity

of two foci of a facet depends on finding the depth of a focus, which is the number

of hierarchy levels that compose the name of the focus. There are many ways to

calculate focus depth when using our model, but a natural way is to represent this
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depth as the largest path in the graph underlying Focusi, where paths are defined

as in Section 4.1.1:

depth(Focusi) = max
p∈PathU(Focusi)

(|p|) (4.4)

4.2.5 Reuse and Unification of Efforts

Reusing existing models, or even parts of existing models, is a difficult endeavor due

to the diversity of key concepts, definitions, and notations. Our goal in discussing how

our model relates to existing work is to demonstrate how dynamic our category theory

foundation can be and that it is able to drive interoperability and reuse. Resulting

work can provide for the reuse and merging of existing models by uniting them in a

common language. In this case, theory has direct consequences for specification and

can help drive implementation.

4.2.6 Computational Complexity

We have focused on structural complexity between categories and morphisms, but

computational complexity should also be addressed. It is only appropriate to con-

sider computational complexity in the context of using abstract categories to write

algorithms, which is one way our model can be applied and reapplied. An exam-

ple is computing the transitive closure of Fin, which can be solved as the repeated

accumulation of pairs of paths and can be demonstrated as having a complexity of

O(N3 logN) where N is the number of nodes [39].

Computational category theory [39] connects functional programming with cate-

gory theory to bridge the gap between theory and implementation. A by-product of

computational category theory is that computational complexity can be studied.

4.2.7 Preliminary Notes on Implementation

Even elegant abstractions can be rendered useless if they are not easily implementable.

Category theory is strongly related to functional programming; one can even show

that a functional programming language forms a category of types and operations [11].

Furthermore, the use of objects (and morphisms between objects) as our model’s foun-

dation means implementation could be in any programming language that supports

an object-oriented paradigm. For instance, Scala [40] is a multi-paradigm language

which supports both functional and object-oriented paradigms. In fact, the category

of finite sets, often called Fin [11, 10], is easily implementable in Scala [41]; there are

Scala libraries available that provide infrastructure for building categories [42, 43].
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Figure 4.2: An API can wrap our model of facets where incoming faceted data is
broken into primitives for abstract reasoning and logic; we can then export in a
convenient format for interface development.

Our interests are in data-driven interfaces, so conceptually a database is a desired

and necessary element. In the next chapter, we focus on showing that facets can be

implemented using relational databases by mapping facets to schemas.

We contend that modeling has direct consequences for implementation; an incon-

sistent model yields an inconsistent system. If we cannot abstractly represent faceted

browsing in an effective manner, it is difficult to extend and improve such a system

and furthermore, the system cannot be adopted or easily modified by others. The-

ory must inform practice; we can use our abstractions to build stronger interfaces

that support interoperability and reuse. Our model, together with category theory,

can help inform how to build a proper application programming interface (API) for

faceted browsing. In this vein, one can mathematically prove that something is pos-

sible before implementation.

As illustrated in Figure 4.2, an API for faceted browsing can provide methods

for breaking down relationships from external file formats into primitive relationships

(e.g., x is-a y) for abstract reasoning and logic. In the case of DELVE [8], faceted

data from XML files are deconstructed into basic relationships; these relationships are

then exported as a list in a JSON file that is compatible with a popular visualization

library.

Our model does not intend to compete with existing and well-known standards

such as the web ontology language (OWL) [44]. OWL in itself is not a facet model,

but could be combined with abstractions to make it an appropriate solution. We

later discuss the role of databases in facet browsing, but we could easily discuss OWL
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as well. Because we are interested in database-driven web applications, we focus on

databases instead. With respect to OWL, our goal is not to compete with as a stan-

dard, but rather to easily marry it with other types and deconstruct its relationships

into usable primitives for the development of faceted browsing interfaces. We aim to

leverage faceted data in any format into a consistent framework for abstraction.

Copyright c© Daniel R. Harris, 2017.
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Chapter 5 From Reusable Abstractions to Reusable Implementations

Even great abstractions are rendered useless for practical applications if they are not

readily implementable. In this section, we detail how our model directly drives im-

plementation; the result is that we can design faceted browsing systems with reusable

abstractions and as a result produce reusable and interoperable implementations. We

show that our category-theoretic facet model can be mapped to a known category

representing database schemas, originally introduced by Spivak [10].

Given that there exists a mapping between facet and schemas, we give details on

how facets can be implemented within a relational database. Implementation requires

instantiation of our proposed abstractions, so we begin by introducing the concepts

necessary to understand instances in the context of category theory.

An additional benefit of instances is that they allow us to model interfaces that

leverage multiple taxonomies. The category-theoretic model is perfectly capable of

representing basic faceted interfaces in its most basic form, but the ability to model

and interact with multiple heterogeneous sources is needed to support more intricate

interfaces. The capacity to integrate multiple terminologies rests largely upon our

ability to model instances of our facet categories. Understanding the relationship

between schemas and facets will be key in understanding the process for creating

instances.

5.1 Facets and Schemas

In this section, we describe how to create instances of facets and faceted taxonomies

with a method and rationale that is inspired by Spivak’s database schemas [10]. In

fact, we discover that facets are equivalent to database schemas because mappings

exist between the two. Although this equivalence may be unexpected initially, concep-

tually the idea of a database schema is not unlike facets when viewed from a category

theory perspective: both describe the conceptual layout that organizes information

(rows/entities in the case of databases and resources in the case of facets).

Theorem 5.1. If there exists an instance of a facet type Faceti category, then there

exists a corresponding instance of a database schema, representing this instance of a

facet type.
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Figure 5.1: We show a sample faceted taxonomy for medications. The objects of
each Facet are pointers to a resource that has been classified as belonging to that
particular facet type.
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Figure 5.2: A resource table and a medications table using example data from Fig-
ure 5.1 shows the role that primary and foreign keys play in modeling faceted brows-
ing.

45



www.manaraa.com

In order to demonstrate this relationship, some preliminary definitions are needed

and are discussed in the next section. As an example, Figure 5.2 shows the same

faceted information found in Figure 5.1, but within a schema. Note that parts of the

table are abbreviated with ellipses in order to save space. We will discuss these tables

and their relationship with faceted browsing in detail in the next section.

Preliminary Definitions

Spivak’s definition of schemas depends upon the idea of congruence, which in turn de-

pends on defining paths, path concatenation, and path equivalence declarations [10].

We give the minimum required amount of detail to understand schemas below and

extend upon this in our discussion of instances of Facet.

Definition 13. If G := (V,A, src, tgt) is a graph, then a path of length n in G is a

sequence of arrows denoted p ∈ Path(n)G , where PathG is the set of paths in G [10].

Definition 14. Given a path p : v → w and q : q → x, p + +q : v → x is the

concatenation of the two paths [10].

Definition 15. A path equivalence declaration (abbreviated by Spivak as PED) is an

expression of the form p ' q, where p, q ∈ PathG have the same source and target,

e.g., src(p) = src(q) and tgt(p) = tgt(q) [10].

Definition 16. A congruence on G is a relation ' on PathG with the following [10]:

1. The relation ' is an equivalence relation.

2. If p ' q, then src(p) = src(q) and tgt(p) = tgt(q).

3. If given paths p, p′ : a → b and q, q′ : b → c, and if p ' p′ and q ' q′, then

(p+ +q) ' (p′+ +q′).

Informally, a congruence is an enhanced equivalence relation that marks how

different paths in G relate to one another by enforcing additional constraints; pairing

a graph with a congruence forms a schema [10].

Categorical View of Schemas

We give Spivak’s definition of a schema below; this definition is generic enough to

also apply to faceted browsing when looking at the underlying graph of the facet

categories. Figure 5.2 contains a schema corresponding to the medications example

from Figure 5.1.
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Definition 17. A schema S is a named pair S = (G,'), where G is a graph and '
is a congruence on G [10].

Note that the keys in Figure 5.2 would normally be integer keys, but here text

labels are applied to increase readability and to improve the ease of understanding

the example. The resource table in this schema contains a generic list of resources (for

example, documents or library items) where each resource has a foreign key indicating

how it is classified. The medications table contains a list of classes and sub-classes

for medications, as well as a self-referential foreign key pointing back at itself; this

foreign key indicates this particular medication’s ancestor. The self-referential key

gives additional structure to the medication classes and sub-classes found within the

table without the need for additional relationship tables; this method of storing a

taxonomy is similar to closure tables [45].

In Figure 5.2, the entry with Medication as its key has no foreign key. This null

relationship indicates that this entry is the root of this particular facet graph; with

respect to the category-theoretic model, it implies there are no morphisms having

this object in its domain. This entry, formally introduced in the next chapter, is a

meta-facet and is sometimes manufactured simply for convenience in arranging facets.

5.1.1 Instances of Facets and Faceted Taxonomies

An instance of a facet is a collection of objects whose data are classified according

to specific relationships, such as the one illustrated in Figure 5.1. We formalize this

below using Spivak’s instances of schemas as inspiration [10].

Definition 18. Let F = (U(Faceti),'), where the graph underlying a facet type is

denoted U(Faceti) for some Faceti ∈ Ob(FacetTax) and where ' is a congruence

on U(Faceti). An instance on F is defined as (Facet, Ancestor) : F → Set where:

1. Facet is a function defined as Facet : V → Set, so for each vertex v ∈ V we

can recover a set of facets denoted Facet(v) within this facet type.

2. for every arrow a ∈ A having v = src(a) and w = tgt(a), a function Ancestor(a) :

Facet(v)→ Facet(w).

3. congruence is preserved: for any v, v′ ∈ V and paths p,p′ from v to v′ where

p = v[f0, f1, f2, . . . , fm] and p′ = [f0′, f1′, f2′, . . . , fn′], if p ' p′, for all x ∈
Facet(v), ancestor(fm) ◦ . . . ◦ ancestor(f1) ◦ ancestor(f0)(x) = ancestor(fn′) ◦
. . . ◦ ancestor(f1′) ◦ ancestor(f0′)(x) ∈ Facet(v′)
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Corollary 5.1.1. Primary keys can store facets and self-referential foreign keys can

store ancestor relationships.

Remark. Given F = (U(Faceti),'), an instance on F , denoted as a pair of func-

tions (Facet, Ancestor) is mappable to an instance of schema, denoted as a pair of

functions (Primary-Key, Foreign-Key), by forcing the Primary-Key function to

represent the corresponding Facet and the Foreign-Key function to represent the

corresponding Ancestor.

It is important to note that because identity functions are enforced by definition

of a category, one record in the database must store a link between a facet and

itself. This type of a data structure is useful when calculating closure tables within

a relational database [35].

Instances of categories are often denoted as I where I0, I1, . . . , IN would be a

collection of N instances.

To create instances of FacetTax, the logic remains the same from Facet: take

the underlying graph and a congruence. Instead of looking at the underlying graph

of a single facet type, the underlying graph of FacetTax is considered.

5.2 Implementing Facets with Databases

If we connect instances back to our notion that schemas are not structurally different

than facets, it is clear that IM is simply another table containing N + 1 relationships

with entries from the Facet0, . . . ,FacetN categories sharing a relationship with the

meta-facet. The foreign keys of these meta-relationships would simply point back to

the roots of the other facets; this enables reuse in-place without needlessly copying

data.

Furthermore, this gives a clear implementation path for enabling reusable termi-

nologies in a standard relational database, where tables help structure facets and the

resources that have been classified accordingly. If a relational database is not possi-

ble for the application, then an equivalent scheme can be mimicked in other suitable

environments that can store hierarchical data. For example, a web-application could

easily use JSON (Javascript Object Notation) data interchange format [46] to store

the taxonomy and links to resources.
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5.2.1 Database Implementation

In this section, we give a concrete interpretation of the mapping illustration in Fig-

ure 5.2 and assume that we are storing our faceted data within a relational database.

It is important to note that at a minimal the model requires an identifier for itself

and a self-referential foreign key pointing to itself to represent the ancestor-descendant

relationships. We are free to add additional columns if they are convenient, such as

a human-readable label as seen in the following definition of an example facet:

CREATE TABLE facetX

(

id INTEGER,

l a b e l TEXT,

ance s to r INTEGER r e f e r e n c e s facetX ( id ) ,

c on s t r a i n t fx pkey primary key ( id )

) ;

The label is optional but will simplify interactivity later. In addition to the

table storing the faceted structure, there needs to be a table for storing relationships

between the resources and the facets. Every resource at a minimum needs an identifier

and when coupled with a facet’s identifier, we get distinct pairs of resource-facet

relationships:

CREATE TABLE re s ou r c e s

(

r e s o u r c e i d INTEGER r e f e r e n c e s r e s ou r c e s ( id ) ,

f a c e t i d INTEGER r e f e r e n c e s facetX ( id ) ,

c on s t r a i n t r e s r c pkey primary key ( r e s ou r c e i d , f a c e t i d )

) ;

We generalize these statements to support multiple faceted taxonomies in the next

chapter. We use these generalizations to assist in the implementation of DELVE’s

components in Chapter 7.

5.2.2 Recalling Resources

At some point during a user’s interactive session in a faceted browsing system, it is

advantageous or desirable to recall and list all resources that were classified according

to a focused selection of facets. When creating instances of our facet categories, we

defined a function capable of returning the ancestor of the facet type for a given facet.

We can similarly define a function capable of returning focused resources.
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Definition 19. Let R be a function defined as R(Focus,Resource) : Focus→ Set,

where:

1. Focus is a function similar to the Facet defined in Section 5.1.1: Focus : V →
Set, so for each vertex v ∈ V we can recover a set of focused facets denoted

Focus(v)

2. Resource is a function defined for every focused facet f ∈ Focus(v) above as

Resource(f) : Focus(v)→ Resource(f).

In other words, similar to how we defined a function Ancestor in Section 5.1.1 as

a self-referential link back to facets, we now define a function that unrolls the foreign

relationship between facets and resources. An example of this is seen in Figure 5.2:

the resource with resource 2 as its key holds a foreign relationship with the medication

that has anti-diabetic as its primary key.

Relating this back to the definition above, we rephrase this as: for every facet in

the graph, collect their primary keys (PKs) and from the resource table, collect any

primary keys where any foreign keys match the original keys (PKs). At this point,

the interface is free to present the resources as needed, which consequentially allows

us to model ranking and sorting schemes for resources; we leave these discussions as

future work.

5.3 Requirements of Faceted Browsing Systems

Faceted browsing is a generalized concept so naturally a large variety of needs ex-

ist across different types of systems. The difference in requirements across systems

directly impacts how complex the abstractions might need to be in order to fully

represent a system faithfully. In the next sections, we give preliminary thoughts on

each type of identifiable faceted interface before discussing in length the importance

of multiple instances in the next chapter.

5.3.1 Single Instance of Facets

The simplest case is that a single faceted taxonomy drives the interface and enables

the user to successfully explore and identify resources of interest. E-commerce is

the most common example of this where one predetermined set of facets are given

as filters for a web interface. The existing examples of published efforts in faceted

browsing presented in Section 4.2.1 rely upon a single instance. This does not imply
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that the interface in question is simplistic or uninteresting, but rather it implies that

its requirements are simply met with a single, organized collection of facets.

5.3.2 Multiple Instances of Facets

If not a single faceted taxonomy, the interface must be driven by multiple faceted

taxonomies and therefore multiple instances of our facet categories must be man-

aged. These are not as common in the e-commerce domain, but are more common in

domains where multiple existing terminologies are used to describe resources, such as

the biomedical domain. For example, healthcare data contains patient and hospital

or clinic visit information which can be described in turn by its elements, such as

medications, procedures, diagnoses, and so on. Each of these pockets of information

have multiple existing taxonomies and standards developed that could be leveraged

to create a faceted taxonomy to use in an exploratory search environment. Small

adjustments in implementation must be made to accommodate the extra faceted

information and we outline these steps in Section 6.1.1.

Within the scope of interfaces with this type of requirement, there are two types of

systems: (1) those that merge taxonomies together into a master taxonomy of smaller

parts and (2) those that depend upon independent taxonomies controlling individual

components of the interface. Because of their inherent design complexity, we dedicate

the next chapter to these types of interfaces that require multiple taxonomies and

give examples related to the biomedical domain.

Copyright c© Daniel R. Harris, 2017.

51



www.manaraa.com

Chapter 6 Requirements with Multiple Instances of Facets

We discussed previously the relationships between instances of facets and their imple-

mentation. An additional benefit of creating instances is that it enables the modeling

and management of multiple taxonomies, which are typically derived from standard

terminologies and consumed by interfaces as part of their exploratory search offer-

ings. We integrate heterogeneous terminologies into our category-theoretic model of

faceted browsing and show that existing terminologies and vocabularies can be reused

as facets in a cohesive, interactive system. Faceted browsing systems can depend

upon one or more taxonomies which outline the structure and content of the facets

available for user interaction [47, 48]. Controlled vocabularies or terminologies are

often externally curated and are available as a reusable resource across systems. We

demonstrated previously that category theory can abstractly model faceted browsing

in a way that supports the development of interfaces capable of reusing and integrat-

ing multiple models of faceted browsing. We extend this model by illustrating that

terminologies can be reused and integrated as facets across systems with examples

from the biomedical domain.

6.1 Examples in the Biomedical Domain

Recall that a simple example of facets for a digital library of books would be genre

or publication date. The taxonomy behind the interface is either custom to the

search needs of the interface or bootstrapped by a terminology familiar to those with

working knowledge of the domain. In the biomedical domain, patients are often

classified according to ICD10 diagnosis codes [49] in their electronic health record;

as seen in Figure 6.1, the i2b2 query tool is capable of searching for patients using

ICD10 codes [14] as well as other common biomedical terminologies. We will discuss

i2b2 and another biomedical application in Section 6.2.

In this chapter, we integrate heterogeneous terminologies as facets into the category-

theoretic model of faceted browsing so that existing and well-known terminologies

can be reused in an intelligent manner. These terminologies themselves can act as a

faceted taxonomy, but we also demonstrate the usefulness of modeling a terminology

as a facet type. We discuss how to create instances of facets and faceted taxonomies

in order for our model to interact with multiple, heterogeneous sources. We present

and compare two considerations for modeling faceted browsing interfaces that utilize
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Figure 6.1: Users can select from a variety of biomedical facets within i2b2, including
those from existing and well-known terminologies; a subset of the ICD10 terminology
as viewed through the i2b2 query tool is shown here.

multiple terminologies: the need to merge facets together and the need for multiple

focuses from different terminologies.

6.1.1 Impact on Implementation

We introduced a sample medication taxonomy in Figure 5.1 where each resource is

classified using the taxonomy. In our model, we refer to resources in the general sense.

The type of resource depends upon the interface: resources could be books in a digital

library system, documents in an electronic health system, and so on. Note that the

taxonomy in Figure 5.1 could easily be considered the facet type medications, which

belongs to a large taxonomy (not pictured) rather than being a complete faceted

taxonomy itself; either scenario is acceptable as this will depend upon the design of

the faceted browsing system, which can vary. We expand this example by showing
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Figure 6.2: An extended example having a resource table with multiple foreign keys
and corresponding tables for medications and procedures.

the impact of including an additional taxonomy to describe the resources. In this

example, we can simply add another foreign key that links the resource in question

to the new taxonomy; this new taxonomy requires a table to store the ancestor-

descendant relationships. If there are N taxonomies, there would be N foreign keys

added to the table of resources. An alternative method would be to split the resources

and foreign keys into individual tables, which is described in the next section.

6.1.2 Mapping Multiple Instances to a Database

Our category-theoretic model of facet browsing uses instances which in turn require

the ability to recover ancestor relationships of objects classified within a facet. In

the previous chapter, we saw that this is mappable to schemas and that the facet

itself requires two things: (1) a table containing ancestor links that are foreign keys

to itself and (2) a table of resources and a foreign key pointing to which facet the

resource is classified. If we consider multiple taxonomies, the easiest solution is to

repeat the process and for each taxonomy, maintain separate tables for each facet’s

structure and each facet’s relationship. The end result for a hypothetical requirement

of having both medication and procedure taxonomies is drawn in Figure 6.3. It is
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Figure 6.3: An extended example having multiple resource-relationship tables con-
taining foreign keys that point to both resources and facets.

important to note that because multiple facets are describing the same resource,

the resource in the resource-facet relationship table is now a foreign key too. This

allows resources to grow and shrink with easy management of their relationships.

Furthermore, it is easier to add tables than it is to add columns in most relational

databases because adding columns requires migration of the old table structure into

the new table structure.

6.2 Faceted Design Considerations

Faceted taxonomies are common in the biomedical domain where controlled vocabu-

laries are curated and integrated into interfaces in order to assist in the exploration

and interaction required by the system. We present two different use cases for faceted

taxonomies with different requirements: one where merging heterogeneous terminolo-

gies into a single taxonomy fits the design of the interface (for example, i2b2) and

one where having control over multiple independent instances of facets is desired (for

example, DELVE).

55



www.manaraa.com

Master

ICD10 (in-patient)

ICD10 (out-patient)

LOINC

HCPCs

....

1.  

2.  

3. 

...

N.

Results

Figure 6.4: A web interface could merge multiple instances together into a master
taxonomy.

6.2.1 Designing Faceted Systems

A common design for faceted systems that require multiple terminologies is to simply

merge everything together into a centralized master taxonomy; this merged taxonomy

is often how lightweight ontologies, discussed as one of the three foundations of facet

models [1], are constructed. The merged taxonomy may or may not have multiple

instances of the same terminology, depending upon what is needed for the interface.

For example, in the conceptual skeleton of the interface presented in Figure 6.4,

the merged taxonomy has multiple existing biomedical terminologies, including two

instances of ICD10, based upon whether the resources are classified as belonging to

in-patient or out-patient resources. In Section 6.2.2, we will discuss i2b2, a modern

biomedical research tool that estimates patient cohort sizes by constructing Boolean

queries from a merged faceted taxonomy.

Alternatively, multiple terminologies can peacefully co-exist within a single inter-

face without being merged into a master taxonomy. In fact, it could be a pivotal

design element in the interface that allows for a deeper exploratory search of the

resources by enabling multiple points of faceted search. In Figure 6.5, we show a

conceptual skeleton for a faceted system utilizing multiple terminologies and multiple

instances of ICD10. For example, such an interface could leverage ICD10 to draw a

graph of facets (i0) and a tree of related facets (i2) and enable the user to interactively

explore resources which could be a simple list with annotations (i1). This example

is similar to the spirit of DELVE, discussed in Chapter 7, where facets are contained

within and help drive visualizations.
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Figure 6.5: A web interface containing multiple instances of a terminology in discrete
components assists interaction.

6.2.2 Interfaces with Merged Taxonomies

The i2b2 (Informatics for Integrating Biology and the Bedside) query tool allows

researchers to locate patient cohorts for clinical research and clinical trial recruit-

ment [14]; the tool itself provides a drag-and-drop method of creating Boolean queries

of inclusion and exclusion criteria from a hierarchical list of facets. For example, if

someone wanted to search for only female patients, they would click into the De-

mographics facet, into the Gender facet, and drag Female to the first query panel.

In addition, if they wanted female diabetics, they would also navigate into the Di-

agnoses facet and drag the desired type of diabetes into the second panel. i2b2’s

Boolean queries are formed from having logical or -statements across panels and and -

statements within a panel. With respect to the example above, if the user wanted

female diabetic and hypertensive patients, they would also find the hypertension facet

and drag it into the same panel having diabetes, so that the panel represents patients

having either diabetes or hypertension. This Boolean construction can be continued

with any number of facets from any number of terminologies.

The biomedical domain has a long history of curating and maintaining controlled

vocabularies and terminologies, such as those found in the Unified Medical Language

System (UMLS) [50]. The structure behind these terminologies is a rich source for

building faceted browsing systems that explore resources having been classified with
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Figure 6.6: The i2b2 query tool uses drag-and-drop interaction to construct patient
queries.

these standards.

In Figure 6.6, the taxonomy of a local implementation of i2b2 is partially shown;

note that every facet type of a patient is compiled into a central taxonomy as part

of the meta-data cell for i2b2 [14]. This means that the central taxonomy has very

different concepts, such as diagnoses and laboratory procedures, residing in the same

table.

Our local implementation of i2b2 uses ICD10 codes [49] for diagnoses and HCPCs

codes [51] for procedures; these terminologies are externally and independently cu-

rated and made available by their creators. To i2b2, diagnosis is a facet type and

ICD10 provides the organizational structure behind diagnoses, but ICD10 is a full

terminology and one can consider ICD10 itself to be a faceted taxonomy for diagnoses;

the use of large-scale existing terminologies in faceted browsing system blurs the line

between facet types and faceted taxonomies, similar to our example and discussion of

Figure 5.1. There is flexibility in our model that allows a terminology to be either a

facet or a faceted taxonomy depending on what is appropriate for the interface that

is being modeled. We take advantage of the notion of flexibility later in Chapter 7

when we discuss DELVE and modeling multiple instances of faceted terminologies

within a single system.

Our modeling technique needs to be able to abstractly and consistently model

both of these cases. In either case, the goal is encouraging the reuse of existing

terminologies so that our faceted taxonomies contain accepted interoperable stan-

dards. An extension of i2b2 allows networking queries between institutions, so that

one Boolean query can return counts of patients from multiple clinical sites; this

would be impossible without integration of accepted biomedical terminologies into

the faceted backbone of i2b2. It is important to note that i2b2 does not prescribe
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what terminologies are to be used; this is a decision for local implementations, so the

actual choice of terminology may vary. Standardization does not solve this problem

as multiple standards exist for any given facet for health record data; modeling so-

lutions need to be generic and adaptable to any faceted taxonomy so that further

application development can proceed quickly.

Regardless of what standard biomedical terminologies are chosen to bootstrap

i2b2’s faceted taxonomy, it is required that they are merged together into a single

taxonomy that operates the interface. This master taxonomy is where concepts are

chosen and dragged into arrangeable boxes for inclusion and exclusion criteria that

target specific patient populations.

6.3 Merge Operations

Supposing we have multiple instances of facets, I0, I1, . . . , IN , how do we satisfy the

requirements of an application such as i2b2 that expects a single instance to act as a

master? For example, I0 could be medications, while I1 could be procedures, and so

on.

Each Faceti category is disjoint and contains no linkage to another Facetj where

i 6= j, so we must manufacture a link. This link is a meta-facet, an organizational

tool that typically aids in drawing the faceted taxonomy [4].

By design, the meta-facet must connect to the root of each facet; we can easily

identify the root in our facet graph because it is the only entry with a null ancestor.

Given an instance, such as I0 above, we know that the root of I0 is the source of an

arrow a ∈ A from U(Facet0) where Ancestor(a) is the empty set; we shall call this

function that returns the root object root(Ii) : A→ Set for some instance Ii.

Definition 20. FacetM is a meta-facet category for categories Facet0, . . . ,FacetN ,

containing a meta-object and the roots of the others such that:

Ob(FacetM) = M ∪ root(I0) ∪ . . . ∪ root(IN)

M is a meta-object sharing a relationship with every object: HomFacetM (M,x) for

each x ∈ Ob(FacetM).

Figure 6.7 illustrates adding a meta-facet to join together a collection of facets;

each black subtree represents a particular facet type. M is a new meta-object that

must be created; the gray and dotted arrows that link this meta-object and the roots

of the other facet graphs must be created as well.
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...

M

Figure 6.7: A meta-facet can assist in merging facets together by providing a common
anchor point.

Let us define the union of two underlying graphs, U(Faceti) and U(Facetj), as

the union of its constituent parts. By definition, the sets of vertices and arrows for

graphs underlying two Facet categories, Faceti and Facetj, are disjoint and can be

merged with the union of corresponding vertices and arrows; this leaves the graph

disconnected, since Faceti and Facetj have no object in common.

Using the root of each instance and a meta-facet, we can create a new instance

connecting every other underlying graph to our meta-facet:

Definition 21. The merger of instances I0, I1, . . . , IN of categories

Facet0, . . . ,FacetN is a new instance IM on (GU ,'U) where:

1. GU = U(Facet0) ∪ · · · ∪ U(FacetN) ∪ U(FacetM). This is the union of the

underlying graphs of the meta-data facet and the facets that are merging.

2. 'U is a congruence on GU . We define this the same as in Section 5.1.1 but
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do note that the collection of paths have grown. No two paths in the merging

categories conflict because the facets are disjoint by definition.

The merged instance IM is not defined much differently than I0, . . . , IN in that it

still maintains (Facet, Ancestor) : F → Set function mappings; the only difference

is that the underlying graph has changed with additional path considerations. The

merge operation is simply a transformation: we are manipulating the facets into a

graph and symbolically merging graphs to suit our needs. The information regarding

classified resources that is embedded into each facet gets reused; only the surrounding

structure changes.

6.4 Alternative to Merging Facets

We stated previously that some interfaces do not require faceted taxonomies to be

merged together. In these situations, discrete components of an interface are indepen-

dently controlled by a faceted taxonomy, so merging is undesirable. We give DELVE

as an example of this type of interface and dedicate the next chapter to understanding

how multiple components can be driven by different faceted taxonomies. We discuss

DELVE from abstraction to implementation and indicate how reuse is emphasized by

our model.

Copyright c© Daniel R. Harris, 2017.

61



www.manaraa.com

Chapter 7 Faceted Browsing with DELVE

In this chapter, we discuss DELVE (Document ExpLoration and Visualization En-

gine), our framework for developing interactive visualizations as modular Web-applications

in order to assist researchers with exploratory literature search [8, 52]. In fact, our

motivation for choosing category theory began when first designing DELVE; we expe-

rienced difficulty in modeling facets that are controlled by visualizations or are found

within a visualization. In the case of i2b2, the design of the interface insists on merg-

ing terminologies together into a master taxonomy that directs exploration within

the interface. With DELVE supporting multiple visualizations, a master taxonomy

is unrealistic as each visualization potentially requires a completely different set of

facets.

The goal for web-applications driven by DELVE is to better satisfy the information

needs of researchers and help explore and understand the state of research in scientific

literature by providing immersive visualizations that both contain facets and are

driven by facets derived from the literature. We base our framework on principles from

user-centered design and human-computer interaction (HCI). Preliminary evaluations

demonstrate the usefulness of DELVE’s techniques:

1. a clinical researcher immediately saw that her original query was inappropriate

due to the frequencies displayed via generalized clouds

2. a muscle biologist quickly learned of vocabulary differences found between two

disciplines that were referencing the same idea, which we feel is critical for

interdisciplinary work

First, we expand upon the discussion about our motivation for building DELVE

and give details on how our framework operates and how it is constructed. We also

discuss how the underlying category-theoretic model of our framework relates to the

end-user interface and show that it naturally encourages the additional development

of reusable visualizations by emphasizing interoperability.

7.1 Why DELVE?

The rapid pace of modern biomedical research has yielded a seemingly endless supply

of peer-reviewed literature that is readily available in digital libraries. Despite general

ease of access, the sheer quantity of material is a barrier for experts wishing to
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Figure 7.1: DELVE contains visualizations controlled by facets as well as visualiza-
tions that contain facets.

maintain an up-to-date understanding in their field, and this abundance of literature

suggests that is not feasible to read most or all of the material in a sub-specialty [53].

Because there is an excess of information to manually review, computational tools

play a pivotal role by allowing experts to ingest summarized or targeted subsections of

the available literature [54]. It is not only the depth of information that is problematic

but also the breadth and reach of topics that makes it crucial to understand the needs

of a diverse population of researchers and to create computational tools capable of

assisting in such a large variety of aims and goals [55].

Online digital libraries such as Pubmed [56] have been greatly successful in creat-

ing an online source of information for biomedical researchers and also as a source of

information for computational tools to attempt to enhance or augment the literature

review and dissemination experience [57]. A review of Pubmed-based applications

identified twenty-eight unique systems and placed them into four general categories:

ranking and search results, clustering results into topics, extracting and displaying

high level semantic entities and relations, and improving search engine and retrieval

experience [57]. Since the completion of this specific application review, trends in-

dicate that applications geared toward extracting and displaying high-level semantic

entities and relations [58, 59, 60, 61] outweigh those that cluster [62] or generally im-

prove the search engine and retrieval experience [63]. All of these research initiatives

are successful in their own right but lack interoperability, making the novel ideas em-

bedded into each system difficult to reuse. Information visualization has been shown

to be useful in uncovering and communicating ideas [64], yet only three applications
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of the original 28 reviewed contained some type of visualization component [57]. A

review of text visualization publications identified over one hundred methods of vi-

sualizing text and created a taxonomy for categorizing visualization techniques [65];

each technique contributes in some way toward communicating raw data in a more

effective manner. Outside of applications that leverage Pubmed, efforts exist to vi-

sualize large collections of data and provide analytical windows on top of raw data

[66, 67].

We wish to provide a framework that does not depend solely upon a single visu-

alization technique but rather provides a suite of possible techniques that can work

together in harmony. Existing online text visualization tools [68, 67] are difficult to

extend either because of their closed-source nature or because they lack a natural

route of integrating other visualizations that might also be helpful. We proposed

DELVE (Document ExpLoration and Visualization Engine) as a general framework

for interoperable and modular development of light-weight web-based applications

geared toward exploring and visualizing large collections of texts in a manner that

strongly supports interoperability and reuse.

7.2 The DELVE Framework

We base our framework upon fulfilling the needs of principles from user-centered de-

sign and human-computer interaction (HCI), in particular Shneiderman’s information

visualization mantra: overview first, filter and zoom, provide details on demand [69].

More specifically, DELVE’s application programming interace (API) is capable of

yielding both summarized information and the corresponding lower-level details of

text documents. Filtering and zooming is supported by allowing a dynamic level of

detail with each facet of information.

In Figure 7.1, a query for fibromyalgia is shown. The screen is split into two

parts for this example; the abbreviated left-hand side contains a cloud [70] and the

right-hand side contains a list of relevant biomedical publications. The default cloud

shows the frequency of terms using the MeSH (Medical Subject Headings) vocabulary;

librarians at the National Library of Medicine manually review journal articles and

tag them with appropriate MeSH terms [71]. MeSH terms are hierarchically organized

and are typically accurate reflections of the article’s contents since they are manually

assigned, making them great facet candidates. In addition to MeSH terms, we extend

the general concept of world clouds [70] to unigrams, bigrams, trigrams, and common

phrases.
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Figure 7.2: DELVE is a series of modular web applications, where each application
maintains interoperability with the others via a common faceted data structure.

DELVE is implemented using the Python-based Django [72] web-development

framework and is made available online as open-source software [73]. Given a Pubmed

query, facets of the resulting publications are exposed via the DELVE API as files

containing JSON (Javascript Object Notation) [74]. These JSON files, which carry

either aggregate or detailed information per query, are used to bootstrap visualiza-

tions created with d3 (Data Driven Documents) [75]. As seen in Figure 7.2, each

web-application is a modular unit that ties into a common Django model that is

responsible for communicating with the raw data residing in the database and expos-

ing the necessary JSON. In other words, each visualization is a self-contained web

application and it can be placed anywhere within a larger collection of visualizations.

The default layout displayed on DELVE’s web site is not the only layout possible;

the API allows for the arrangement of each visualization as the application’s intent

demands.

The seed that begins the DELVE workflow is a Pubmed query that is completely

compatible with Pubmed’s robust query engine, i.e. supporting tags such as [Mesh

Terms] ; the added value is that the abstracts and meta-data corresponding to these

results are exposed via the DELVE API to feed directly into d3 visualizations. Be-

cause the syntax matches across systems, a researcher can directly compare the results

of querying Pubmed and the results of querying DELVE. Exposing the results via

JSON enables rapid development and prototyping visualizations and alternative or

supplemental search experiences. Per query results, meta-data components such as

publication details and authorship details are available; the text of the abstract is

exposed as either (1) JSON lists of unigrams, bigrams, trigrams, and MeSH terms,

or (2) partial or complete sentences depending upon need. In Figure 7.3, we visualize
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Figure 7.3: DELVE exposes the raw data stored in a relational database as JSON;
the JSON is rendered as a visualization within a web page.

how data flows from the database and into a web page. The raw data is stored in

the database as tables; DELVE’s API transforms and exposes this data as JSON

that gets transmitted through HTTP or HTTPs as part of a web page. We align

our transformed data as JSON files that are directly consumable by the d3 library

discussed previously.

7.3 Interoperability and Reuse

Our DELVE search tool is a special case of a faceted browsing system [1] where

facets control visualizations but also where the visualizations contain facets that can

be selected, such as any of the words or phrases displayed by the clouds, word trees, or

phrase nets. When we first began working on DELVE, we were motivated by unifying

text visualizations for exploratory search for a common purpose and implemented a

selection of visualizations for a specific group of publications regarding a specific

disease that interested a clinical researcher in our collaboration. Although successful

as a proof of concept that encouraged us to move forward, we had great difficultly

in communicating abstractly how our visualizations were actually transforming the

raw data into usable modules that contribute to the larger aim of exploring text

collections. At the same time, we identified that it was difficult to reuse existing work

and visualizations in the same area because of the variety of theoretical foundations

used to create such systems [5].

We solve the issue of communication and the issue of reusability by using the pro-

posed abstract model of faceted browsing and use the knowledge of category theory

to consume and unify other theoretical models of faceted browsing [5]. Specifically

in the biomedical domain, heterogeneous terminologies play an important role in ex-

ploring and presenting data [48] and the category-theoretic model of faceted browsing
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gives us precise language to describe how instances of terminologies can be used as

facets.

It is easy to convert other faceted browsing systems into the category theoretical

model because there exists representations of sets, graphs, lattices, and other com-

mon data structures in category theory. In other words, category theory provides

a common language for describing and modeling faceted systems. Because DELVE

is a framework designed to enable development, reuse is encouraged in two ways:

(1) consistent abstractions imply that novel ideas and features of applications formu-

lated in the common language can be exchanged freely and (2) these ideas can be

implemented in a common manner so that they are interoperable in practice.

Facet is providing the specification for what it means to be a facet; instances of

Facet can be created for DELVE where I0, I1, I2, . . . , IN represent N collections of

objects whose data are classified according to specific relationships, which is needed

in systems where more than one faceted taxonomy can be leveraged [48]. An instance

of MeSH and an instance of ICD9 could be utilized in visualizations requiring both

MeSH terms and diagnostic codes.

In Chapter 6, we demonstrated that the Facet category is structurally equivalent

to Schema, the category-theoretic view of database schemas [48]. Both categories

describe the conceptual layout that organizes information: rows/entities for databases

and resources for facets. At the core of Schema is primary key to foreign key

relationships of which we can map facet and ancestor relationships so that we can

easily implement faceted browsing in a relational database system. At a minimum,

this requires two tables: one with the faceted structure and one with the relationships

between facets and resources. The table for the faceted structure is at a minimum a

two column table with a primary key representing a facet and a self-referential foreign

key representing its ancestor.

In the following section, we discuss various methods of visualizing text and give

insight on how those visualizations are implemented in DELVE; we include details

on their corresponding database and JSON structures. We also show how the pro-

posed abstractions of faceted browsing inform and guide the implementations of each

visualization, so the connection between the proposed facet model and each database

table and JSON structure is clarified.

7.3.1 Visualizing Text

As proof of concept in planning DELVE, we specifically looked at including the fol-

lowing text visualizations:
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Figure 7.4: A word cloud shows frequency of unigrams extracted from the abstracts
of articles. The above word cloud was generated from documents returned from a
Pubmed query regarding fibromyalgia.

• clouds: visualizing relative frequency of words or phrases [70]

• word trees: visualizing sentences centered at a specific root [76]

• phrase nets: visualizing relationships centered at a specific anchor [77]

We will explore each of these visualizations in depth over the next sections and

describe how they are represented by our category theoretic model of faceted browsing

and how they can be easily reused.

We are also experimenting with integrating topic model analysis and visualizing

the topics generated and attached to each body of text. Each of these visualizations

offers something different: clouds give frequency of words or phrases, word trees

give the context surrounding a word or phrase, and phrase nets give relationships

between words or phrases. Many additional text visualization techniques exist [65],

but the three we have selected provide a baseline for understanding the contents of
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publications matching a particular query. We will discuss each of these types of text

visualization in the next sections.

7.4 Creating Reusable Clouds

As seen in Figure 7.4, word clouds are visualizations where common words found

within a collection of text are drawn with size relative to their frequency so that the

most frequent words are drawn the largest. Clouds are not without controversy [78]

but have been demonstrated to be useful in research settings [79, 80, 61, 60]. An argu-

ment against clouds is that the clutter is distracting noise and that a sorted bar graph

could easily visualize the same information. This is true, but for web-applications,

screen real estate is limited and only relative frequency matters for exploration; pre-

cision is not particularly valued: a frequency of x is not radically different than a

frequency of x + 1. On the other hand, x/2 is a notably different frequency than

x for considerably large values of x. With clouds, we densely pack frequency in-

formation into a relatively small component of the web page. A sorted bar graph

containing the same information would require a considerably larger portion of the

screen. Compacting this information as clouds allows us to construct interfaces with

multiple visualizations to give an immersive exploratory search design. Traditional

clouds are constructed from words or tags and a corresponding frequency, but we

extend the basic concept of clouds for DELVE.

We generalized the concept of clouds so that they can show frequency of MeSH

(Medical Subject Headings) terms [71], unigrams, bigrams, trigrams, and important

phrases, which can be used to filter out or focus in on certain documents within the

particular query being explored. Figure 7.5 shows an example of a MeSH cloud for

a Pubmed query for fibromyalgia; for example, clicking ankylosing spondylitis would

show those articles that were also assigned the ankylosing spondylitis MeSH term.

Common MeSH terms such as humans could be pre-filtered if desired. We convert

the raw text from abstracts into pairs of words and their corresponding frequency;

we can then aggregate these counts per query.

In Figure 7.6, a bigram cloud shows frequencies of bigrams extracted from the

abstracts of articles returned for fibromyalgia. This cloud immediately shows that

chronic pain is the most frequently occurring two-word phrase, which is expected,

but it also shows unexpected phrases such as irritable bowel and sleep quality which

could be points of entry for researchers exploring the topic. Regardless of interest,

the cloud acts as a method for choosing a point of focus. If a researcher clicks on
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Figure 7.5: A MeSH cloud shows frequency of MeSH terms attached to a collection
of articles. The above MeSH cloud was generated from documents returned from a
Pubmed query regarding fibromyalgia.

irritable bowel within the cloud in Figure 7.6, only research articles containing that

phrase will be listed.

Similar to bigram clouds, Figure 7.7 shows a trigram cloud for the same search

on fibromyalgia. The general concept of visualizing frequency is the same but the

pool of phrases visualized is different. If the trigrams and bigrams were visualized

together, the frequency of the bigrams would almost always out-weight the frequency

of the trigrams; for this reason, the clouds are treated independently. There are

exceptions to this observation that are visible in both Figure 7.6 and Figure 7.7; the

trigram irritable bowel syndrome occurs so frequently that both irritable bowel and

bowel syndrome appear in the bigram cloud.

7.4.1 Abstracting Clouds

In this section, we discuss how to formalize generic clouds and how to implement

generic clouds with DELVE. Clouds are buckets of facets, whether those facets be

MeSH terms, unigrams, bigrams, or trigrams. The bucket of facets is specialized by

how it is visualized according to relative frequencies of each facet found within the

bucket, which we will give details on how to calculate after this section.

The concept of having a bucket of facets is identical to our category of facets

known as FacetTax, which is simply a collection of Facet objects. Each Facet is a
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Figure 7.6: A bigram cloud shows frequency of bigrams extracted from the abstracts
of articles. The above bigram cloud was generated from documents returned from a
Pubmed query regarding fibromyalgia.

collection of objects that are simply pointers to resources classified as belonging to

that particular facet.

Each type of cloud corresponds to a taxonomy for that particular type of cloud;

we can create instances of FacetTax objects as follows:

• I0 - MeSH terms

• I1 - unigrams

• I2 - bigrams

• I3 - trigrams

I0, I1, . . . , IN denote instances as defined in Section 5.1.1 and they are constructed

from the graph corresponding to each individual taxonomy. Recall that each instance
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Figure 7.7: A trigram cloud shows frequency of trigrams extracted from the abstracts
of articles. The above trigram cloud was generated from documents returned from a
Pubmed query regarding fibromyalgia.

corresponds to two functions (one function for vertices and one function for arrows)

that together map a pair consisting of the underlying graph for that particular facet

and a congruence relationship on that particular graph to a simple Set of facets.

We can demonstrate our model using MeSH as an example. MeSH can be easily

viewed as a hierarchy and the NLM provides an online tool for browsing and viewing

MeSH terms [81]. A screen capture of the MeSH browser is shown in Figure 7.8; we

insert into this capture a visual mapping of how our Facet categories could map MeSH

terms. Only parts A-E of the MeSH hierarchy are shown and we only expand parts

D (chemicals and drugs) and E (analytical, diagnostic and therapeutic techniques,

and equipment). There are no relationships across each part of the MeSH hierarchy;

for example, there are no relationships between A codes (anatomy) and B codes

(organisms). This is exactly how Facet categories work: they are disjoint due to
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Figure 7.8: We augment a screen capture of the MeSH Browser by including how our
model’s abstractions would map terms from parts A-E of the MeSH hierarchy.
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the nature of facet typing. Just as a book’s genre has no direct relationship to its

categorical price, the MeSH headings corresponding to part C (diseases) have no direct

relationship with part D (chemicals and drugs). The relationships are embedded

within each Facet category: inorganic chemicals (D01) and chemical actions and

uses (D27) are both children of chemicals and drugs (D). There are multiple levels

of MeSH’s hierarchy of terms; for example, toxic actions (D27.888) is a child of

chemical actions and uses (D27) which is a child of chemicals and drugs (D). The

MeSH Browser allows one to navigate the hierarchy by clicking and expanding nodes

to see ancestor-descendant relationships.

On a side note, each MeSH term maps to a concept unique identifier (CUI) in

the UMLS and external relationships between concepts may exist [50]. The current

DELVE prototype does not integrate with the UMLS, but there is potential for the

semantic indexing of abstracts where extracted concepts can be visualized instead of

lexical phrases.

7.4.2 Implementing Clouds

In Chapter 6, we demonstrated that schemas are equivalent to facets and can provide

a means of implementation for the abstractions presented. There are two components

necessary for implementation: (1) a table with taxonomy information and (2) a table

with resources tagged according to entries in the taxonomy.

For MeSH terms, the taxonomy table requires an integer id that acts as a primary

key, an ancestor integer that acts as a self-referential foreign key, and a label that

represents the human readable version of the MeSH term:

CREATE TABLE mesh terms

(

id INTEGER,

l a b e l TEXT,

ance s to r INTEGER r e f e r e n c e s mesh terms ( id ) ,

c on s t r a i n t mt pkey primary key ( id )

) ;

There are additional pieces of information that can be added to this table, such as

an indicator determined by the NLM specifying if this term is considered major [71],

but they have been excluded for simplicity.

Additionally, the table containing resources is kept fairly simple:

CREATE TABLE pmid mesh

(

pmid INTEGER r e f e r e n c e s pm ar t i c l e s (pmid ) ,
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mesh id INTEGER r e f e r e n c e s mesh terms ( id ) ,

c on s t r a i n t pm pkey primary key (pmid , mesh id )

) ;

The pmid column references an additional table hosting information about each

article tagged with the MeSH term to which the mesh-id column points:

CREATE TABLE pm ar t i c l e s

(

pmid INTEGER,

update date TIMESTAMP,

t i t l e TEXT,

j o u r n i s s n TEXT,

j o u r n t i t l e TEXT,

j ou rn i s o abb r ev TEXT,

journ volume TEXT,

j o u r n i s s u e TEXT,

journ pub day TEXT,

journ pub month TEXT,

journ pub year INTEGER,

medl ine ta TEXT,

medl ine country TEXT,

medl ine n lm id TEXT,

au th l i s t c omp l e t e yn TEXT,

CONSTRAINT pm ar t i c l e s pkey PRIMARY KEY (pmid )

) ;

Note that this table could be further normalized by making a journal dimension,

but this was not required by the example application’s needs.

The tables required for constructing clouds with unigrams, bigrams, and trigrams

differ slightly. Because unigrams, bigrams, and trigrams are lexical extractions from

the article text, they have no embedded ancestor and descendant relationships. In

this sense, they act more like a bag of words or a flat hierarchy with one level. A

different type of extraction, such as concept extraction, could yield concepts from a

standardized terminology [50] and structure from the terminology could be inserted

into the table. Given this, the table is simple:

CREATE TABLE bigram terms

(

id INTEGER,

l a b e l TEXT,

c on s t r a i n t bt pkey primary key ( id )

) ;
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An additional difference between MeSH terms and unigrams, bigrams, and tri-

grams is that a MeSH term can be linked to an article or not while a bigram can

be linked to an article and even multiple times if it occurs more than once in the

corresponding text. We store this frequency as an additional column to describe the

relationship between the word and article. We give bigrams as an example but the

unigram and trigram tables are virtually identical except for naming conventions:

CREATE TABLE pmid bigrams

(

pmid INTEGER r e f e r e n c e s pm ar t i c l e s (pmid ) ,

b igram id INTEGER r e f e r e n c e s bigram terms ( id ) ,

f r equency INTEGER,

c on s t r a i n t pb pkey primary key (pmid , b igram id )

) ;

We can also store additional information about this relationship, including what

section of the text from which the word was extracted.

Formalizing Visualization Cloud Computation

The model clearly provides structure for the taxonomy and the resources, but it also

provides a way to formalize computations. As a simple example, consider MeSH

clouds. Recall that each object of Facet is a set of resources that has been classified

as belonging to that facet. If I0 is an instance of the facet type for MeSH, then we

can easily generate a sequence of frequencies for objects x1, x2, . . . ∈ Ob(I0) by simply

considering their cardinality:

Definition 22. Given an instance of a facet I0, for x ∈ Ob(I0), let the frequency of

an object x be defined as freq(x) = |x|. Let freq(Ob(I0)) be a n-tuple of frequencies:

freq(Ob(I0)) = (freq(x0), freq(x1), . . . , freq(xn)) where n = |Ob(I0)|.

Given that we can know all of the frequencies for facets in a facet type, we are

free to use that information in other calculations. There are different strategies for

computing font size within a cloud, taking either the raw frequency or the square

root of the frequency and mapping that to a range of font sizes [70].

One possible solution is linear scaling with an offset:

s =
x

max(freq(Ob(I0)))
+ ε (7.1)

where x is a given frequency from Ob(I0) and ε is a desired offset that could enforce a

minimum font-size if desired; if not, ε can be set to 0. For example, if the scale of the
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font size ranges from 0 to 1 and the maximum frequency is 100, then our offset scale s

given a frequency x would be calculated as s = x/100+ε. Looking at boundary cases,

words with the maximum frequency found would scale at 1 + ε and words with the

smallest frequency possible would scale at 1/100 + ε, assuming a minimum frequency

of 1.

7.4.3 JSON Structure

One of the many benefits of DELVE is that complex sources of information are

exposed as JSON files in order to better support visualization. In this particular

case, text from the abstracts are processed into a list of words and their corresponding

frequencies. JSON is one of the default file types that can be visualized by d3, an

open-source library for visualizing data within web pages [75].

In Figure 7.4, we show how a query for fibromyalgia is visualized as a cloud and

emphasize that relative frequencies are distinguishable; the following shows the first

three records when inspecting the associated JSON:

[ { ”word” : ” pain ” ,

” f requency ” : 2962

} ,
{

”word” : ” pa t i e n t s ” ,

” f requency ” : 2511

} ,
{

”word” : ” f i b romya lg i a ” ,

” f requency ” : 1991

} ,
. . .

]

7.4.4 Visualizing the Connection Between Abstraction and Implementa-

tion

In Figure 7.9, we illustrate how our abstract classes provide the specifications that we

can instantiate within a database. For example, consider that instances of FacetTax

are created requiring database tables corresponding to faceted taxonomies for MeSH

terms and pointers to publications tagged with MeSH terms. Similar tables exist for

unigrams, bigrams, and trigrams. The pointers are Pubmed identifiers (PMIDs) and

point to the table of articles discussed in Section 7.4.2. The faceted tables contain
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Figure 7.9: We visualize the connection between specification and instantiation and
between the database layer and the application layer.
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simple identifiers, labels, and a foreign key ancestor to itself and its parent. DELVE is

a database-driven application, so it is important to note that DELVE ushers the data

from the raw tables found in the database layer into the application layer where the

cloud application aggregates frequencies, computes the cloud structure, and outputs

the JSON required by the visualization library.

7.5 Creating Reusable Word Trees

Word trees are graphs that show where a chosen word or phrase appears in a body

of a collection of texts [76]. Every occurrence is grouped together either by what

precedes the word or by what follows it up to a configurable maximum height. For

example, Figure 7.10 shows a word tree with a root word of fear drawn from the

abstracts of documents returned from a Pubmed query on fibromyalgia. This example

shows that the word fear is commonly followed by the word of which in turn is

followed by a variety of fears. The document in which a chosen sentence occurs

can be easily displayed after clicking a specific branch of the tree; if more than one

document contains this sentence or sentence fragment, a list is presented. In this

particular case, only a single article was found having fear of as a parent of the

phrase future, hopelessness, and mental health issues. If clouds give frequency of

certain words or phrases, word trees are a supplemental visualization that gives the

context surrounding such words or phrases.

7.5.1 Abstracting and Implementing Word Trees

There are multiple ways to implement word trees. In the next section, we discuss

one such method and we give details on how our category-theoretic model abstracts

word trees. At this point, the visualizations need the actual text of the abstracts,

so we store the text to have available for processing and computing as desired. We

pre-compute what can be calculated in advance, such as delineating sentences from

the raw text.

We store these abstracts as large collections of text; some of the abstracts are

divided into sections such as introduction, methods, conclusions, and so on. We

could potentially use this extra information in our visualizations; for example, we

can show only words found in conclusions of abstracts if researchers found such de-

lineations valuable. Additional columns can annotate the article abstracts, such as

its designated NLM category [50], and we can also leverage this in our visualizations.

CREATE TABLE pm abstracts
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Figure 7.10: Word trees show where a chosen word or phrase appears in text. The root
of this word tree is fear and the sentences shown correspond to documents returned
from a Pubmed query regarding fibromyalgia.

(

pmid INTEGER,

s e c t i o n i d INTEGER,

sect ion num INTEGER,

s e c t i o n l a b e l TEXT,

s e c t i o n c on t en t TEXT,

c on s t r a i n t pm akey primary key (pmid , s e c t i o n i d )

) ;

The actual sentences are extracted and stored in a separate table. We can feed

these sentences into our algorithm that computes word trees discussed in a subsequent

section below.

CREATE TABLE pm sentences

(

pmid INTEGER,

sentence num INTEGER,

sentence TEXT,

s e c t i o n i d INTEGER r e f e r e n c e s pm abstracts ( s e c t i o n i d ) ,

c on s t r a i n t pm skey primary key (pmid , sentence num )

) ;

It is important to realize that the database attached to DELVE acts as a long-
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term storage mechanism but does not directly store the computed content needed to

visualize a word tree. Each word tree is specific to the pool of texts corresponding

to a query and pre-computing the word tree in advance would be a waste of storage

space and in most cases, simply not possible. To save space, we compute the word

tree on the fly given a query and a root using the algorithms presented in the next

section. This computation can be done quickly enough to maintain a live response

within the web application.

In order to demonstrate how word trees are computed, it is valuable to look at

the desired output that our visualization libraries will be able to consume and upon

which visualizations are produced. In the next section, we detail what the desired

structure of a word tree should be when considering visualization.

7.5.2 Word Trees from JSON

Word trees are structures that attempt to show how words are used in context within a

collection of sentences. Every occurrence is grouped together either by what precedes

the word or by what follows it up to a configurable maximum height. The data

structure is recursive: a record contains a label for a word, a frequency count, a list

of identifiers representing publications containing that label, and a list of children

where the children are also full records having labels, counts, a list of identifiers, and

their corresponding children. This JSON file is used as input for the visualization

library d3 [75] which in turn renders a tree rooted at a particular phrase. The root

is simply the first word in the structure that acts as a parent to every record in the

tree below it. The list of publications is used to load tool tips that show additional

information regarding the publication, such as its title and abstract.

For the query regarding fibromyalgia that is visualized in Figure 7.10, the following

shows the first few entries of the corresponding JSON:

{
” count” : 79 ,

”pmids” : [ 21687553 , 22935170 , . . .

] ,

”name” : ” f i b romya lg i a ” ,

” ch i l d r en ” : [

{
” count” : 8 ,

”pmids” : [ 22210272 , 22617632 , . . . ] ,

”name” : ”syndrome ” ,

” ch i l d r en ” : [
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{
” count” : 1 ,

”pmids” : [ 22210272 ] ,

”name” : ”( fms ) i s a common chron i c pain cond i t i on . . . ” ,

” ch i l d r en ” : [ ]

} ,
{

” count” : 1 ,

”pmids” : [ 22427134 ] ,

”name” : ”( fm) be f o r e and a f t e r behav io ra l . . . ” ,

” ch i l d r en ” : [ ]

} ,
{

” count” : 1 ,

”pmids” : [ 22527642 ] ,

”name” : ”( fms ) w i l l be presented . ” ,

” ch i l d r en ” : [ ]

} ,
{

” count” : 1 ,

”pmids” : [ 21866329 ] ,

”name” : ” that i s acceptab l e to pa t i en t ” ,

” ch i l d r en ” : [ ]

} ,
. . .

Ellipses are used to abbreviate entries. For example, the count on the root of this

word tree is 79 and there must be 79 publication id numbers listed in its list of

publications; to save space, we only show the first two id numbers.

In their paper introducing the concept of word trees [76], Wattenberg and Viégas

focus on the utility of word trees; they detail implementation considerations such as

scalability and limitations of java applets, but they do not actually give an algorithm

necessary to produce word trees. We implement word trees as a list of dictionaries

with the added requirement that we must track frequency of the current word at this

point in the tree. We also track the identifiers attached to articles corresponding to

sentences contained within the word tree, but omit this because it simply adds in

tracking another list of identifiers to the algorithm. Our algorithm recursively inserts

sentences into a word tree by inserting words into a list of dictionaries containing a

label or name corresponding to the inserted word and a list of children (who are also

dictionaries).

A basic procedure to initialize our data structure is depicted in Algorithm 7.1.

82



www.manaraa.com

This procedure returns a dictionary containing three items: a name (label corre-

sponding to a word), a count (frequency), and a list of children. The children will

each be initialized with this procedure too.

Algorithm 7.1 Initializing a word tree node

1: procedure Init Node(word) . Initializes fields for name, count, and children.
2: d← {} . d is initialized as an empty dictionary.
3: d{name} ← word
4: d{count} ← 1
5: d{children} ← [ ] . Children is initialized as an empty list.
6: return d

Algorithm 7.2 will insert a sentence into a list of dictionaries. In this context, the

sentence is actually a trimmed sentence that starts with the root of the tree and ends

where the sentence naturally ends. For example, if the original sentence was The cat

had a hat and the desired root was cat, the truncated sentence would simply be cat

had a hat. We represent these trimmed sentences as arrays of words. The algorithm

works by inserting the first word of the sentence at a specific node and recursively

inserting the next word at that specific node’s children. An important observation in

understanding our recursive solution is that the list variable changes as the recursive

calls continue. If a match is found in the tree, the words following the match will be

inserted as children of the match. If a match is not found, the words get inserted as

new nodes. The recursion ends when the array of words becomes empty after the last

word of the trimmed sentence is inserted. We define what it means to insert a word

at a specific node in Algorithm 7.3.

Algorithm 7.2 Inserting a sentence into a word tree

1: procedure Insert Sentence(list, words)
2: . Given a list, insert a sentence (array of words)
3: if words is not empty then
4: Insert Sentence(Insert Word(list, words[0]), words[1 : ])

Recall that the general structure is a list of dictionaries. In order to insert a word,

we must first check to see if it is already in the list of dictionaries. If it already exists,

we increment the count and return this node’s children in order for the next word to

be inserted at the correct position. If the word we are trying to insert is not in the

list, we create a new node and append it to the list.

If there are N words to be inserted for a sentence of length N , it would require at

most N recursive calls to do so. Each word insertion requires scanning a list to see
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Algorithm 7.3 Inserting a word into a word tree

1: procedure Insert Word(list, word) . Given a list, insert a word
2: if list is not empty then
3: for d in list do
4: if d{name} == word then
5: d{count} ← d{count}+ 1
6: return d{children}
7: temp←Init Node(word) . If this word was not found, initialize new node.
8: list.append(temp)
9: return temp{children}

if it is already there or not; the length of this list is bound by how many sentences

correspond to the abstracts related to a given query. For example, given a collection

of M sentences, if each sentence is unique after the chosen root, then the root will

have M children. Given this, we can expect the act of inserting a sentence to exhibit

O(M ∗N) behavior but note that in practice M > N unless the query has returned

very few abstracts and as a consequence very few sentences. The utility of word trees

increases as the number of sentences increases because the user is exposed to more

data. If we consider the act of inserting all M sentences, we need M calls that cost

O(M ∗N), each resulting in O(M2 ∗N) behavior.

7.5.3 Visualizing the Connection Between Abstraction and Implementa-

tion

In Figure 7.11, we show the impact of including word trees on DELVE’s design. The

same MeSH terms, unigrams, bigrams, and trigrams are reused to act as anchors into

sentences and in this context are used as roots of the word trees. To enable this,

we must include the text of the abstracts at a minimum; because response time is

crucial in an exploratory search system like DELVE, we pre-compute the extraction

of sentences from the abstracts and maintain links between abstracts and sentences.

Globally, we have links between the cloud types of MeSH terms, unigrams, bigrams,

and trigrams and articles; therefore, we also have links between the cloud types and

the sentences. In other words, given a specific type of facet, we can return sentences

containing that facet.

The MeSH term, unigram, bigram, or trigram becomes the root of the word tree

which in turn is used to split the linked sentences. The word tree is computed and

the resulting JSON file is used to produce the necessary visualization. When an entry

in a cloud is selected in DELVE, that entry is chosen as the selected focus of that
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Figure 7.11: We visualize the impact of including word trees into DELVE’s design
and visualize the connection between the database and application layers.
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query. The default root of the word tree is the selected focus. With this, we have

facets found within visualization of clouds that can control word trees rooted at a

certain facet.

7.6 Creating Reusable Phrase Nets

In terms of visualizing text and information found within the text, phrase nets [77]

could display local co-occurrences between words or concepts in order to give insight

on relations embedded into the corresponding documents. We have not implemented

phrase nets, but we have prototyped how they might relate to and interact with

DELVE. For example, consider a phrase net focusing on the word and ; phrases of

the form x and y would be drawn as x → y where (1) the direction of the arrow

indicates word order and (2) the size of the arrow indicates frequency of this phrase

occurring within the pool of documents returned by this query. Additionally, the color

of the words can indicate individual frequency in order to show relationships between

frequent and less frequent occurrences; darker coloring indicates a more frequently

occurring word. In this section, we give examples of phrase nets centered around

different anchor words and discuss issues that must be overcome in order to increase

their utility.

When aggregating data across a large number of resources, the largest obstacle

becomes the amount of unique phrases that commonly occur. Figure 7.12 shows the

raw result of computing a phrase net given our example DELVE query on fibromyalgia

and given the anchor word and. Heavily occurring phrases such as pain and sleep and

fibromyalgia and rheumatoid are distinguishable, but the less frequently occurring

phrases appear muddied. To combat the problem of visual clutter, filters need to be

added to selectively display phrases.
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Figure 7.12: An unfiltered phrase net for a query on fibromyalgia anchored around
the word and demonstrates the potential clutter caused by having many distinct yet
frequent phrases.

We show a filtered phrase net in Figure 7.13 that uses the same data set but has

been truncated only to show the most common phrases by frequency. In the filtered

version, it is easier to see conjunctive relationships that frequent words such as pain

share with less frequent words such as spasm, tenderness, and dizziness. The co-

occurrence of words implies a relationship that the related abstracts should reflect.

With DELVE, we would desire the ability to choose a phrase and see a list of its

related abstracts to better support exploratory search.
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Figure 7.13: A filtered phrase net shows phrases anchored with the word and shows
the most common conjunctions.

Phrase nets anchored at the word and are popular because they imply a con-

junctive relationship between words, but it is also helpful to view disjunctions. In

Figure 7.14, a filtered phrase net for a search on fibromyalgia anchored around the

word or is shown. The figure shows that prevention or treatment is the most com-

monly occurring disjunction, which is not surprising given that it is a pain disorder.

It is also apparent that depression or anxiety, habituation or sensitization, and activ-

ities or environments occur frequently. These are all points of entry for exploratory
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Figure 7.14: A phrase net for a query on fibromyalgia anchored around the word or
shows the most common disjunctions.

search on the given topic. The user should be able to drill-down and investigate why

depression or anxiety occurs so frequently to understand the context of the phrase.

Either depression or anxiety could be entered as the root of a word tree and the

researcher could explore the context of these phrases in the scope of a word tree.

Any word or phrase is a valid anchor for phrase nets. We have shown conjunctive

and disjunctive phrases because they are popular, but there are no limitations on what

can server as a valid anchor. In Figure 7.15, we show a phrase net using the same

fibromyalgia example query but this time it is anchored around the word increases.

This type of phrase net is meant to be thought provoking and meant to illicit further

exploration of the data to fully understand the context of the phrases displayed. For

example, the phrase conflict increases symptoms suggests that some type of conflict
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Figure 7.15: A phrase net for a query on fibromyalgia anchored around the word
increases shows the most common words that indicate something is causing an upward
trend.

results in fibromyalgia symptoms increasing; further study could illuminate why this

observation might be true. For phrase nets of this nature, it is often desirable not to

filter out stop words. For example, the phrase and increases pain occurs frequently.

One could root a word tree at and increases pain to see the context of these state-

ments and attempt to understand what exactly does increase pain. DELVE allows

researchers to view abstracts of articles directly from the visualizations as tool tips

as discussed later in Section 7.9.

7.6.1 Visualizing the Connection Between Abstraction and Implementa-

tion

In Figure 7.16, we show the potential impact of including phrase nets on DELVE’s

design. Each member of a phrase of the form (a b c) is a facet and the visualization is

conveying frequency of two facets linked together by a common anchor. We envision
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Figure 7.16: We show the impact of adding phrase nets into DELVE’s design and
visualize how the database and application layers interact.
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that phrase nets could interact with the selected focus of a query much like word trees

do. For example, if a user selects an entry in a word cloud, that selected entry would

act as the focus of the word tree and the anchor of the phrase net. Alternatively,

it might be helpful to include a radio-button list of very common anchors, such as

conjunctive and disjunctive words.

Because phrase nets visualize phrases of the form (a b c), we need some way

of recovering these adjacent word relationships within our database. One potential

route is to store the position of terms within the sentences found within the abstracts

and for a given anchor, return the anchor at position i and its adjacent neighbors

at positions (i− 1) and (i + 1). Because response time is crucial given that DELVE

is a web application, we can pre-compute these phrases and store them in a table;

for convenience, we can store links between the phrases and the sentences that they

occur in for later use. In Figure 7.16, we call this table pm adjacencies.

Recall that phrase nets can be constructed from an anchor selected within any

type of cloud, whether it be MeSH, unigrams, bigrams, or trigrams. For example,

if we consider constructing a phrase net from a unigram b selected from a unigram

cloud, we need access to data of the form (a b c) where a, b, and c are all unigrams

that sequentially co-occur within an abstract. Specifically for handling the data needs

of unigram phrase nets, we propose the following definition:

CREATE TABLE pm adjacenc ies

(

pmid INTEGER r e f e r e n c e s pm ar t i c l e s (pmid ) ,

s en t en c e i d INTEGER r e f e r e n c e s pm sentences ( s en t en c e i d ) ,

unigramA INTEGER r e f e r e n c e s unigram terms ( id ) ,

unigramB INTEGER r e f e r e n c e s unigram terms ( id ) ,

unigramC INTEGER r e f e r e n c e s unigram terms ( id ) ,

c on s t r a i n t pb pkey primary key (pmid , s en t ence id ,

unigramA , unigramB , unigramC)

) ;

In other words, each record is a unique occurrence of a phrase of the form (a b c)

for a given Pubmed article and a given sentence within its abstract. Each a, b, and c

are usable unigrams and can be found in other DELVE visualizations. The goal is to

streamline the preparation of the data required to construct and visualize a phrase

net for a given query and a given anchor.

The application layer receives adjacencies for a given facet. The adjacencies are

aggregated and the phrase net is computed; the resulting JSON is sent to the visual-

ization library.
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7.6.2 Other Visualization Candidates

Additionally, we considered integrating topic model analysis in order for computed

topics to be visualized across sets of documents. Semantic knowledge bases also offer

an additional source of information that could be visualized and presented as part of

the suite, as later discussed in Section 7.9.

7.7 Developing with the DELVE Framework

The DELVE API is easily extended if a data element is not already exposed via JSON

for consumption. If a data element was missing, one would need only to initialize

the application within the Django framework and add the view logic that produces

the JSON from the raw data so that it gets exposed per query at a chosen URL. For

example, suppose publication date was not already available but we wish to produce a

histogram of publication dates for articles corresponding to any given Pubmed query.

The views in this new component would take the raw data and transform it into the

JSON required by the application. Specifically, the JSON:

[{"total": 1, "journ_pub_year":2006},

{"total": 1, "journ_pub_year":2007},

{"total": 1, "journ_pub_year":2008},

{"total": 2, "journ_pub_year":2010},

{"total":27, "journ_pub_year":2011},

{"total":55, "journ_pub_year":2012},

{"total": 3, "journ_pub_year":2013}]

corresponds to the histogram in Figure 7.17 and is a great example of how basic

histograms can imply much about trends within a research area. In other words, the

presentation or visualization layer is strategically separated from the view layer that

is responsible for deciding what data elements from the model should be exposed.

7.8 Driving Exploratory Search with Visualizations

The visualizations discussed in the previous two sections are good examples of taking

well-known text visualizations such as word clouds and word trees and turning them

into modular applications. By themselves, these applications serve a very specific pur-

pose: word clouds provide frequency and word trees provide context. Together, these

applications can join cohesively into a single interface designed to take the Pubmed
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Figure 7.17: A basic histogram of publication quickly reveals temporal trends in topic
popularity.

query results and immerse a researcher with a visual index of relevant publications.

At this point, the visualizations generated with DELVE can either stand alone as

they are or can be incorporated into a larger web application. Because we want to

augment the researcher’s exploratory search with additional information that would

otherwise be difficult to see via traditional search methods, a centralized search portal

that integrates all visualizations together is desirable.

We implemented a search tool using DELVE that offers configurable window panes

of visualizations for a given Pubmed query; a sample session for a query for fibromyal-

gia and rheumatoid arthritis is shown in Figure 7.18-A. The general workflow consists

of a Pubmed query returning associated documents that act as input for the visual-

ization suite. Individual panes house each visualization in a separate tab. As seen in

Figure 7.18, the layout of the panes is configurable so that the user can arrange the

offered visualizations as they deem most effective.

For example, in Figure 7.18-D, four different types of clouds are displayed at once:

MeSH, unigram, bigram, and trigram; each cloud is distinct in the list of possible

words or phrases that could be displayed and that could align with what the researcher
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(A)

(B) (C)

__

(D)

Figure 7.18: Our prototype combines different DELVE applications into a single user
experience by providing integrated visualizations that collectively enable a researcher
to explore collections of texts. Both the number of panes and the layout is configurable
by the user in DELVE: (A) shows a sample three-pane view with clouds, word trees,
and a document list, (B) shows a simple one-pane view that shows only a cloud, (C)
adds a pane to show word trees, and (D) shows that different types of clouds can be
viewed at once.

is seeking. For example, suppose that a researcher is interested in persistent depressive

disorder ; this phrase is not available as a MeSH term and articles are usually assigned

an older variant dysthymic disorder MeSH term, yet DELVE provides trigrams as an

alternative to MeSH terms and persistent depressive disorder can occur and match

the intentions of the researcher.

The visualizations are linked together so that an interaction in one pane has

consequences in another. The most useful interaction implemented is the ability to

focus on a word, bigram, trigram, or MeSH term; focusing selects only those articles

that either contain the chosen entry or in the case of MeSH terms, only those articles

that were assigned that particular MeSH term. The visualizations operate on a set of
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documents; if the set of documents is manipulated by the interface with an action like

focusing, the visualization is updated. Since the visualization is blind to the process,

the interface is free to provide any type of interactivity that filters or zooms the data.

7.9 Evaluation and Design

It is known that users struggle to successfully refine queries in search-based systems

simply from looking at the number of attempts per query [82]. Because most search

systems return a limited list of top search results, there is routinely not enough

information presented to determine if a query was incorrect or sub-optimal, outside of

the extreme case where all results appear unrelated. DELVE attempts to correct this

and make query refinement easier by providing clouds that clearly display frequency

of terms or phrases for all documents being returned by this query. This gives the

user feedback pertaining to the entire body of documents being returned rather than

only the first n-publications for those systems that return a ranked top-n list.

Scenario: Sub-optimal Search Strategy

For example, suppose that a researcher is interested in chronic fatigue syndrome and

its relationship with functional somatic syndromes. The phrase functional somatic

syndromes is not available as a MeSH term and articles are usually assigned a more

general somatoform disorders MeSH term, yet DELVE provides trigrams as an alter-

native to MeSH terms and functional somatic syndromes occurs in high frequency, as

seen in the clouds A1 and A2 from Figure 7.19. Without multiple lenses to inspect

summarized and aggregated data, it may be difficult for the researcher to reconcile

what his or her needs are against what the machine reports and understands. Sur-

prisingly, a search for only functional somatic syndromes yields a significant number

of results for chronic fatigue syndrome, as seen in clouds B1 and B2 from Figure 7.19.

This implies that the researcher’s search strategy plays a large role in how successful

they may be in finding relevant articles; to combat against a user’s unintentionally

sub-optimal search strategy, multiple lenses placed over the data potentially compen-

sate for weaknesses in any single lens. For example, trigram clouds usually return

phrases that do not overlap MeSH terms and may match what a researcher desired.

Scenario: Poisoned Queries

In our preliminary evaluation of our DELVE prototype, a clinical researcher imme-

diately saw that her original query was inappropriate simply due to the frequencies
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(A1)

(B1)

(A2)

(B2)

Figure 7.19: Differences between A1/A2 (MeSH and trigram clouds for chronic fatigue
syndrome) and B1/B2 (MeSH and trigram clouds for functional somatic syndromes)
illustrate the need for multiple lenses when searching; the MeSH cloud in A1 is missing
the term somatoform disorders because it did not reach the minimum frequency
required to be illustrated.

displayed by the clouds; it was determined that, by including the word inflamma-

tion inside a conjunction, the query results were being poisoned with results related

to the human liver for a disease that typically has very little to do with the liver.

The refined and corrected query contained approximately twenty percent fewer doc-

uments and was ultimately deemed a more successful query by the researcher. In

Figure 7.20, we give an example on how feedback is supplied back to the user. Recall

that alongside the visualizations discussed, a list of documents is displayed showing

what documents remain post filtering. The text of the abstract is shown with focused

words highlighted; we discuss focusing more in Section 7.9.1. The goal is to help the

researcher understand why this article was included in the results; if the article is not

appropriate, the user can modify their query to attempt to calibrate the results. The

overarching goal is not to create a perfect information retrieval system that ranks and

suggests articles to researchers, but rather to enable the researcher to immerse them-

selves in an environment where they are free to explore, hypothesize, and understand
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the context of the visualizations that surround them.

Figure 7.20: Terms and phrases can be selected as a point of focus; feedback such
as highlighting the focused term or phrase must be given to the user so that they
understand why this article was correctly or incorrectly included in the search results.

Scenario: Term Unfamiliarity

Similarly, a researcher may struggle with unfamiliarity of the terms used by an al-

ternative discipline within an interdisciplinary collaboration. A muscle biologist was

able to successfully reconcile differences between his own terminology and that of a

bio-mechanical engineer by being presented with both frequencies and the associated

context given by word trees. We also wish to explore how researcher preference and

technical background plays a role in seeking information; because the interface pro-

vides a variety of analytic windows on top of the raw data, user choice becomes a

pivotal element in whether or not researchers are successful in finding the information

they seek.

7.9.1 Understanding DELVE

DELVE provides other collections of terms as facets for two reasons: 1) interdisci-

plinary collaboration typically involves researchers interested in biomedical literature

who are not familiar with MeSH terms and 2) granularity and phrasing of terms

can be an issue. From a modeling perspective, there are natural differences in the

structure of the MeSH hierarchy and the collection of anchoring trigrams, but our

categorical model naturally accounts for this by allowing objects to have any inclusive

relationship within Facet categories: including those who have many relationships

(MeSH terms) and those who have none (DELVE’s trigrams). In DELVE’s case, in-

stances of facets play a role when creating focused collections of documents based on
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Figure 7.21: A DELVE search for fibromyalgia publications focusing on analgesics

what the user has selected through the interface, which could potentially span one or

more facets.

Other visualizations, such as word trees and histograms, are available as part of

the extensible nature of DELVE. We give an example of MeSH clouds and word trees

working together in Section 7.9.2.

Focusing Considerations

The annotated screen-shot in Figure 7.21 demonstrates DELVE’s ability to use a

facet to focus. In this example, a search for fibromyalgia is focused on the MeSH

term analgesics, which causes the documents viewer to show only those documents

that are classified as belonging to the MeSH term analgesics. Multiple points of focus

are supported in the subsequent version of DELVE, such as focusing using different

word clouds [70] and word trees [76]. If the user also selects the MeSH term female,

the document viewer would only show those documents tagged with both MeSH terms

analgesics and female. Color is used to visually offset the facets being focused upon.

The document viewer ranks results according to how many occurrences of the focus

terms can be found within the abstract of the corresponding article.

Within one faceted taxonomy, aggregating focuses becomes a focused version of

the queries discussed in Chapter 2. If we have created instances of Facet categories

as discussed in Section 5.1.1, we can also create instances of focused subcategories by

taking a subgraph of the graph underlying Facet:

Definition 23. Given instances I0, I1, . . . , IN of categories Facet0, . . . ,FacetN , let

IF0, IF1, . . . , IFN be focused instances created by replacing U((Faceti)) with U(Focusi)

for i = 0, 1, . . . , N .
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Equation 3.7.1 indicated how to pinpoint objects of focused instances by taking

the disjoint union of the inclusions necessary to create the focused collection of ob-

jects; Definition 23 simplifies this notation by structuring instances of focused facets

as graphs where the objects can be referenced by definition simply due to our repre-

sentation of the graph as a tuple.

7.9.2 Interacting with Word Clouds and Trees

In DELVE, facets contained in visualizations can work together harmoniously through

a centralized point of focus; by default, focusing in one visualization will set the focus

in all other visualizations. In Figure 7.22, we show a DELVE search for fibromyalgia

and the result of focusing on the MeSH term depression. Within the MeSH cloud, the

term is highlighted with blue and a secondary reminder cue containing the focused

term is placed below the original query. The word tree redraws itself with the selected

term as the root of the tree; this shows occurrences of the term depression within

the sentences belonging to the classified resources, where redundancy is collapsed to

a common prefix. For example, the following phrases are collapsed under tree nodes

for depression followed by anxiety :

1. depression, anxiety, and headache.

2. depression, anxiety, poor sleep quality and poor physical fitness...

3. depression, anxiety, muscle pain, autoimmune and thyroid disease...

From Figure 7.22, we can also see that the phrases of the form {depression, anxiety,

and ...} and the phrase {depression, but not with anxiety} point to different resources

containing relationships between fibromyalgia, depression, and anxiety. The goal of

DELVE is to immerse a researcher into an exploratory search system where visual-

izations help expedite the discovery process. This goal is made easier by constructing

DELVE upon a solid theoretical foundation that has been demonstrated to intelli-

gently reuse and integrate existing biomedical terminologies.

7.10 Future DELVE Considerations

In this chapter, we presented DELVE, a framework for developing interactive visual-

izations as modular Web-applications; we targeted biomedical publications available

via Pubmed to assist researchers with exploratory search for research. We demon-

strated that DELVE is a special case of the category-theoretic model of faceted brows-
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Figure 7.22: A DELVE search for fibromyalgia publications focusing on depression
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ing; in this case, visualizations both contain facets and are driven by facets. This

abstract framework enables the consistent design and implementation of reusable and

interoperable DELVE applications. We also presented a publicly available prototype

that demonstrates and integrates several DELVE-based visualizations. Preliminary

evaluation indicated that DELVE was helpful in tuning a researcher’s query for ap-

propriateness and for helping cross barriers in interdisciplinary research by providing

access to multiple lexicons understood by opposing fields. We are working to expand

our library of DELVE applications in order to provide a complete suite of interop-

erable visualizations that immerse a researcher into an environment where research

needs are easily serviced. Additional visualizations could incorporate the results of

data mining and machine learning results upon the resources to be explored. If the

computed results are mappable to a taxonomy or produce output according to an

existing vocabulary or data standard, they can be easily integrated into our model.

Copyright c© Daniel R. Harris, 2017.
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Chapter 8 Conclusions

We contribute a model of faceted browsing that uses category-theory as its theoretical

foundation; our goal is to provide a common language and environment that can unify

existing and future research or development efforts with respect to faceted browsing.

We wish to support a research environment that emphasizes reuse and interoperability

in order for the propagation of novel components rather than their isolation to a single

implementation.

8.1 Future Work

We are applying our model to the next stage of our interface and framework, DELVE

[8], in order to represent faceted structures that help create or control other faceted

structures. Together with deeper elements of category theory, our model will help

inform how to build a proper application programming interface (API) for faceted

browsing. The mapping between schemas and facets clears the path to implementa-

tion using a database containing tables for faceted data and faceted taxonomies. Sup-

port for functional databases is growing [29, 30], but a traditional relational database

is adequate to store faceted relationships. An API for faceted browsing can bridge the

gap between a categorical model for faceted browsing and databases, allowing us to

start with traditional relational databases and migrate toward functional databases

as they mature and become a realistic option for web-driven and data-driven appli-

cations.

We have demonstrated that it is possible to represent facets, faceted taxonomies,

and faceted queries with category theory. Once the faceted query is performed, the

interface must allow the user to successfully interact and engage with the faceted in-

formation being presented. We wish to continue our model to include this exploratory

search phase of faceted browsing by leveraging deeper elements of category theory.

For example, if an interface was designed to fulfill Shneiderman’s information seeking

mantra [69], how can tasks such as overview, filter, zoom, and details-on-demand be

modeled? How can additional tasks from Shneiderman’s task taxonomy [69], such as

seeing relations, history, and extraction, be modeled?

Furthermore, if each of these tasks or interactions can be abstracted, does this

model suggest anything about being able to measure the usability of the system?

Usability is most commonly measured qualitatively, but we would like to explore the
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possibility of quantitatively measuring usability.

As mentioned previously, a natural consequence of modeling facets, faceted tax-

onomies, and faceted browsing systems is that resources ultimately get retrieved.

This opens the door to abstractly modeling and developing categorical manipula-

tions of faceted data in a way that is transparent and reusable across systems. For

example, we demonstrated that the categorical constructions pullbacks and pushouts

can help easily organize and reorganize faceted data, resulting in new constructions

such as faceted views that house interactive facets that do not directly exist in the

source taxonomy. These and other types of related operations could potentially lead

to creating facets dynamically, where new facets are created in real-time from com-

putations involving existing ones potentially as a consequence of interactivity. Other

operations, such as retractions, need to be explored so that their role in the model is

fully understood; this is the groundwork toward the next steps of ranking and sorting

resources.

The impact that visualizations play in faceted browsing systems deserves to be

explored further. In systems such as DELVE, one interaction can have consequences

in many parts of the interface. Ultimately, with a category-theoretic model, one will

be able to prove something is mathematically possible before implementation; the

relationships and road maps between proof and implementation paths need to be

researched further.

8.2 Conclusions

We have demonstrated that category theory can act as a theoretical foundation for

faceted browsing that also encourages reuse and interoperability. We have estab-

lished facets and faceted taxonomies as categories and have demonstrated how the

computational elements of category theory, such as products, functors, pushouts, and

pullbacks, extend the usefulness of our model.

The utility of faceted browsing systems is well-established in the digital libraries

research community [6, 7], but current efforts would benefit from a more abstract

framework that encourages reuse and interoperability. In this context, reuse and in-

teroperability are at two levels: between systems and within a system. Our model

works at both levels by leveraging category theory as a common language for represen-

tation and computation. Without this common language, it is difficult to abstractly

model a system that utilizes multiple faceted structures (hierarchies, trees, graphs,

lattices), even if there are shared notations and definitions between them.
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We have demonstrated that category theory can be used to model faceted browsing

and that it offers a consistent view of facets as objects and morphisms between objects.

With our general framework for communicating mathematically about facets at a

high level of abstraction, we can construct interoperable interfaces and reuse existing

efforts intelligently.

Copyright c© Daniel R. Harris, 2017.
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Appendix A: Examples of Facet Models

It can be difficult to understand the nature of our proposed category-theoretic model

of facets without seeing other examples of facet models. In this section, we review

in detail two well-known facet models that have a fundamentally different theoretical

foundation than our proposed model.

Recall these two facet modeling efforts that use set theory as a foundation:

FaSet [25] and Category Hierarchies [23]. They differ in their key definitions and

how they model filtering and ranking. This example will outline each effort in detail

and describe how each model defines and interacts with facets.

A Review of FaSet

In FaSet [25], Bonino et al. defines a facet as “an independent point of view for

representing the content of a resource”; key definitions from the paper:

1. A facet F is a set of items; in systems with multiple facets, they are disjoint:

Fa ∩ Fb = ∅. The items in the set represent labels for that facet.

2. The facet space U is the universe set defined by the Cartesian product of all

facets: U = Fa × Fb × Fc × . . .

3. A focus L is a named subset of F : L ⊆ F , where the name is a nullable,

variable-length list of indexes: L〈i, j, k, . . .〉.

4. The classification of a resource r is the subset of F that is relevant, denoted as

r ⊥ F . A sharp classification is a classification, for some set of focus names P,

that can be expressed as a union of foci: ∃P : r ⊥ F =
⋃
p∈P L〈p〉

5. The multi-dimensional, sharp classification of a resource r with respect to a

facet space U is defined as a product: r ⊥ F = (r ⊥ Fa) × (r ⊥ Fb) ×
(r ⊥ Fc) × . . ., which given the definition of a sharp classification also implies

r ⊥ F =
⋃
p∈Pa

La〈p〉 ×
⋃
p∈Pb

Lb〈p〉 × . . .

This allows sharp classifications to be written as lists, which is easily imple-

mentable.
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Dimensions of Facet Types

FaSet supports flat, hierarchical, and nested facet types. Nobel Prize category is

the example given for a flat facet type, having values such as chemistry and physics.

Geographical region is the example given for hierarchical: one can select country,

state, city, etc. Age ratings are given as an example of a nested facet type, where if

a video game is appropriate for a 7+ years old child, then it is also appropriate for a

12+ years one.

For flat and hierarchical facet types, multiple values can be focused upon. Lan-

guage is an example of a flat facet that allows multiple focuses; for example, one can

indicate they speak both English and Spanish. Research paper topics are an example

given for a hierarchical facet type that allows multiple values: for example, one could

indicate a paper covers both user models and user studies, which are underneath

human-computer interaction.

For example, for facet Fc, Pc = {〈1〉, 〈3〉, 〈5〉}, is a simple flat-type of facet that

allows multiple foci. This can be contrasted with for facet Fe, Pe = {〈2〉, 〈3, 2, 1〉},
which is a hierarchical-type facet that allows multiple foci.

Filtering and Ranking

Bonino defines filtering as a stateless process for determining which resources are

compatible with a query. Compatibility is formally defined for a given query q, a

resource r, and a classification U, as C = (q ⊥ U) ∩ (r ⊥ U) 6= ∅. This definition is

used to construct a definition for prefix compatibility of two foci, denoted as La〈p1〉 �
La〈p2〉, where p1 and p2 are either equivalent or prefixes of the other. Filtering can

formally defined as ∃pq ∈ Pa(q),∃pr ∈ Pa(r) : La〈pq〉 � La〈pr〉. In other words,

filtering simply becomes checking the prefix compatibility of the facets belonging to

the query and resource.

Bonino defines ranking as an ordering of the faceted resources that were compat-

ible with the query; the general idea is that if resources have facets and the query is

a faceted query, then one can measure the similarity between query and resource.

To formally construct a definition of ranking, Bonino gives:

1. The depth D(La〈p〉) of a focus La〈p〉 is the number of hierarchy levels that

compose the name of the focus.

2. Given two foci La〈p1〉 and La〈p2〉 of a same facet Fa, they define their focus
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similarity as:

S(La〈p1〉, Lb〈p2〉) = W (min{D(La〈p1〉), D(La〈p2〉)})

By definition, this is for when La〈p1〉 � La〈p2〉 and is 0 otherwise. W is a

vector of increasing weights that map the depth level to a real number on the

interval (0, 1]: these are definable as necessary. The example uses W (0) = .10,

W (1) = .33, W (2) = .45, W (3) = .60, and W (1) = .80.

3. The focus similarities can be rolled up per each facet Fa for a given resource r

and query q:

Sa(q, r) =
⊕

pq∈(q⊥Fa)

[ max
P∈(r⊥Fa)∧pq�pr

S(La〈pq〉, La〈pr〉)]

where the algebraic sum (or “probabilistic OR”) is defined as a⊕b = a+b−a ·b;
this also continues to restrict the solution to the interval [0, 1). Different facets

have different depths and foci, so a normalized in-facet similarity is proposed

so that similarity can be relative across facets: S∗q (q, r) = Sa(q, r)/Sa(q, q).

4. The authors intersect the similarity values with the “probabilistic AND” oper-

ator defined as a⊗ b = a · b:

S(q, r) =
⊗

a∈facets

S∗q (p, r)

The resources can then be ranked according to their similarity measure.

The added benefit of this method of modeling facets is that it is almost directly

implementable with SQL. The authors demonstrate how to represent the data in a

relational database and how to build filtering and similarity operators.

A Review of Category Hierarchies

Facetedpedia is a faceted system built on top of Wikipedia, which demonstrates how

to use directed acyclic graphs as the key data structure of a facet model[23]. The use

of the word category in this model is unrelated to category theory.

Li defines a facet as dimensions/attributes/properties of objects and a faceted

interface as a set of category hierarchies for a set of objects. Wikipedia offers category

and sub-category relationships and Facetpedia automatically constructs a faceted

hierarchy for a given query based on these relationships. Key definitions:
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1. The target articles of a given query q is the set of top-s ranked Wikipedia

articles T = {p1, . . . , ps}. Each Wikipedia article p′ that is hyperlinked from a

target article p is called an attribute article, represented as p′ ← p. The set of

attribute articles is A = {p′1, . . . , p′m}.

2. A category hierarchy is a connected, rooted directed acyclic graphH(rH , CH , EH),

where rH is the root category, CH = {c} is the set of categories, and EH = {c→
c′} is the set of category to subcategory relationships.

3. A facet F (r, CF , EF ) is a rooted, connected subgraph of the category hierarchy

H(rH , CH , EH), where CF ⊆ CH , EF ⊆ EH , and r ∈ CF is the root of F .

4. A facet is a safe reaching facet if ∀c ∈ CF , there exists a target article p ∈ T
such that c reaches p.

5. A navigational path in F is a sequence c1 → . . .→ ct ⇒ p′ ← p, where,

a) for 1 ≤ i ≤ t, ci ∈ CF

b) for 1 ≤ i ≤ t− 1, ci → ci+1 ∈ EF

c) p′ ∈ A, and ct is a category of p′, represented as ct ⇒ p′.

d) p ∈ T , and p′ is an attribute article of p (p→ p′).
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